論文の概要: Control of quantum coherence of photons exploiting quantum entanglement
- arxiv url: http://arxiv.org/abs/2305.19825v2
- Date: Mon, 18 Sep 2023 01:42:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-19 23:39:18.369867
- Title: Control of quantum coherence of photons exploiting quantum entanglement
- Title(参考訳): 量子絡み合いを利用した光子の量子コヒーレンス制御
- Authors: Dianzhen Cui, Xi-Lin Wang, X. X. Yi, and Li-Ping Yang
- Abstract要約: 本稿では,光子の高次量子コヒーレンスを制御するために,量子絡み合いと局所位相操作技術の利用を提案する。
光子対の2階コヒーレンス関数の空間構造を,光子の光子強度分布を変化させることなく正確に操作することができる。
- 参考スコア(独自算出の注目度): 1.5249435285717095
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurately controlling the quantum coherence of photons is pivotal for their
applications in quantum sensing and quantum imaging. Here, we propose the
utilization of quantum entanglement and local phase manipulation techniques to
control the higher-order quantum coherence of photons. By engineering the
spatially varying phases in the transverse plane, we can precisely manipulate
the spatial structure of the second-order coherence function of entangled
photon pairs without changing the photon intensity distribution of each photon.
Our approach can readily be extended to higher-order quantum coherence control.
These results could potentially stimulate new experimental research and
applications of optical quantum coherence.
- Abstract(参考訳): 光子の量子コヒーレンスを正確に制御することは、量子センシングや量子イメージングにおいて重要な応用である。
本稿では,光子の高次量子コヒーレンスを制御するために,量子エンタングルメントと局所位相操作の活用を提案する。
横面の空間変化位相を工学的に設計することにより、各光子の光子強度分布を変化させることなく、絡み合った光子対の2次コヒーレンス関数の空間構造を正確に操作することができる。
我々のアプローチは容易に高次量子コヒーレンス制御に拡張できる。
これらの結果は、光学量子コヒーレンスの新しい実験的研究と応用を刺激する可能性がある。
関連論文リスト
- Non-classical excitation of a solid-state quantum emitter [0.0]
1つの光子が固体量子エミッタの状態を変えるのに十分であることを示す。
これらの結果は、量子ネットワークにおける量子情報転送の実現から、フォトニック量子コンピューティングのための決定論的エンタングゲートの構築まで、将来の可能性について示唆している。
論文 参考訳(メタデータ) (2024-07-30T16:16:58Z) - Manipulating spatial structure of high-order quantum coherence with
entangled photons [15.627112223345419]
時間領域における光の量子コヒーレンスを操作することにより、単一光子源を生成することができる。
空間領域における高次量子コヒーレンスは、量子イメージング、ホログラフィー、顕微鏡などの様々な応用において重要な役割を果たしている。
論文 参考訳(メタデータ) (2023-06-01T15:04:58Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
我々は、光子を媒介とする効果的なスピン-1系間の相互作用に、光遷移を持つマルチレベルエミッタを利用する方法を示す。
本結果は,空洞QEDおよび量子ナノフォトニクス装置で利用可能な量子シミュレーションツールボックスを拡張した。
論文 参考訳(メタデータ) (2022-06-03T14:52:34Z) - On-chip spin-photon entanglement based on single-photon scattering [2.4567119332161234]
我々は、入射光子と静止量子ドットスピン量子ビットの間のオンチップエンタングゲートを実証する。
結果は、フォトニックエンタングルメント生成とオンチップ量子論理の両方が可能な量子ノードを実現するための大きなステップである。
論文 参考訳(メタデータ) (2022-05-25T15:14:28Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
数百光モードの超長光子量子ウォークについて報告する。
このセットアップでは、最先端の実験をはるかに超えて、最大320の離散的なステップで量子ウォークを設計しました。
論文 参考訳(メタデータ) (2022-03-28T19:37:08Z) - Dynamical photon-photon interaction mediated by a quantum emitter [1.9677315976601693]
単一光子は量子科学と技術の主要なプラットフォームを構成する。
量子フォトニクスの主な課題は、どのように高度な絡み合った資源状態と効率的な光物質界面を生成するかである。
我々は、単一光子波束間の量子非線形相互作用を実現するために、単一量子エミッタとナノフォトニック導波路との効率的でコヒーレントな結合を利用する。
論文 参考訳(メタデータ) (2021-12-13T17:33:30Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
量子電磁力学は、導波路で伝播する光子と局在量子エミッタとの相互作用を扱う。
我々は、誘導光子と順序配列に焦点をあて、超放射および準放射状態、束縛光子状態、および有望な量子情報アプリケーションとの量子相関をもたらす。
論文 参考訳(メタデータ) (2021-03-11T17:49:52Z) - Enhancing nonclassical bosonic correlations in a Quantum Walk network
through experimental control of disorder [50.591267188664666]
我々は制御可能な不均質量子ウォークダイナミクスを実験的に実現した。
ネットワークの2つのモード間の量子相関の強化を示す2つの光子状態を観察した。
論文 参考訳(メタデータ) (2021-02-09T10:57:00Z) - Two-photon phase-sensing with single-photon detection [0.0]
経路交叉多光子状態は、ショットノイズ限界を超えた光位相センシングを可能にする。
我々は、2つの光子対生成イベントを重畳した先進量子状態工学を利用する。
光ダイオード上の単光子ビームの平均強度を測定することにより、位相シフトを推定する。
論文 参考訳(メタデータ) (2020-07-06T08:50:37Z) - Hyperentanglement in structured quantum light [50.591267188664666]
光の自由度が1つ以上の高次元量子系の絡み合いは、情報容量を増大させ、新しい量子プロトコルを可能にする。
本稿では、時間周波数およびベクトル渦構造モードで符号化された高次元・耐雑音性ハイパーエンタングル状態の関数的情報源を示す。
我々は2光子干渉と量子状態トモグラフィーによって特徴付けるテレコム波長で高い絡み合った光子対を生成し、ほぼ均一な振動と忠実さを達成する。
論文 参考訳(メタデータ) (2020-06-02T18:00:04Z) - Generating Spatially Entangled Itinerant Photons with Waveguide Quantum
Electrodynamics [43.53795072498062]
本研究では、導波路に直接結合する超伝導トランスモン量子ビットを用いて、そのような光子の決定論的生成を示す。
我々は2光子N00N状態を生成し、放出された光子の状態と空間的絡み合いが量子ビット周波数で調節可能であることを示す。
論文 参考訳(メタデータ) (2020-03-16T16:03:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。