論文の概要: InGram: Inductive Knowledge Graph Embedding via Relation Graphs
- arxiv url: http://arxiv.org/abs/2305.19987v3
- Date: Thu, 17 Aug 2023 14:08:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-21 19:33:10.285438
- Title: InGram: Inductive Knowledge Graph Embedding via Relation Graphs
- Title(参考訳): InGram: 関係グラフによる帰納的知識グラフの埋め込み
- Authors: Jaejun Lee, Chanyoung Chung, Joyce Jiyoung Whang
- Abstract要約: 本稿では,インダクティブ・ナレッジGRAph eMbedding法であるInGramを提案する。
実験の結果,InGramは様々な帰納的学習シナリオにおいて,14種類の最先端手法より優れていた。
- 参考スコア(独自算出の注目度): 16.005051393690792
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inductive knowledge graph completion has been considered as the task of
predicting missing triplets between new entities that are not observed during
training. While most inductive knowledge graph completion methods assume that
all entities can be new, they do not allow new relations to appear at inference
time. This restriction prohibits the existing methods from appropriately
handling real-world knowledge graphs where new entities accompany new
relations. In this paper, we propose an INductive knowledge GRAph eMbedding
method, InGram, that can generate embeddings of new relations as well as new
entities at inference time. Given a knowledge graph, we define a relation graph
as a weighted graph consisting of relations and the affinity weights between
them. Based on the relation graph and the original knowledge graph, InGram
learns how to aggregate neighboring embeddings to generate relation and entity
embeddings using an attention mechanism. Experimental results show that InGram
outperforms 14 different state-of-the-art methods on varied inductive learning
scenarios.
- Abstract(参考訳): 帰納的知識グラフの完成は、トレーニング中に観察されない新しいエンティティ間の三重項の欠落を予測するタスクとみなされている。
ほとんどの帰納的知識グラフ補完法は、全ての実体が新しいものであると仮定するが、推論時に新しい関係が現れることを許さない。
この制限により、既存のメソッドは、新しいエンティティが新しい関係を伴う実世界の知識グラフを適切に扱うことができない。
本稿では,推論時に新たなエンティティだけでなく,新たな関係の埋め込みを生成できる帰納的知識グラフ埋め込み手法ingramを提案する。
知識グラフが与えられた場合、関係グラフは関係と親和性重みからなる重み付きグラフとして定義する。
関係グラフと元の知識グラフに基づいて、InGramは隣り合う埋め込みを集約する方法を学び、注意機構を用いて関係と実体の埋め込みを生成する。
実験の結果,InGramは様々な帰納的学習シナリオにおいて,14種類の最先端手法より優れていた。
関連論文リスト
- Inference over Unseen Entities, Relations and Literals on Knowledge Graphs [1.7474352892977463]
知識グラフ埋め込みモデルは、様々な課題に対処するために、トランスダクティブな設定でうまく適用されている。
本稿では、エンティティとリレーションのバイトペアエンコードされたサブワード単位のシーケンスから三重埋め込みを構築するための注意的バイトペアエンコーディング層(BytE)を提案する。
BytEは、知識グラフの埋め込みモデルに、エンティティやリレーションではなくサブワード単位の埋め込みを学習させるため、重み付けによる大規模な機能の再利用につながる。
論文 参考訳(メタデータ) (2024-10-09T10:20:54Z) - Extending Transductive Knowledge Graph Embedding Models for Inductive
Logical Relational Inference [0.5439020425819]
この研究は、従来の帰納的知識グラフの埋め込みアプローチと、より最近の帰納的関係予測モデルとのギャップを埋めるものである。
本稿では,帰納的埋め込み法で学習した表現を活用して,推論時に導入された新しい実体の表現を帰納的設定で推論する一般調和拡張法を提案する。
多数の大規模知識グラフ埋め込みベンチマークの実験において、この手法は、帰納的知識グラフ埋め込みモデルの機能を拡張するためのものであり、いくつかのシナリオでは、そのような帰納的タスクのために明示的に導出される最先端のモデルよりも優れています。
論文 参考訳(メタデータ) (2023-09-07T15:24:18Z) - Graph Relation Aware Continual Learning [3.908470250825618]
連続グラフ学習(CGL)は、無限のグラフデータストリームから学習する問題を研究する。
我々は、縁の裏側にある潜伏関係を探索する関係発見モジュールからなるRAM-CGと呼ばれる関係認識適応モデルを設計する。
RAM-CGはCitationNet、OGBN-arxiv、TWITCHデータセットの最先端結果に対して2.2%、6.9%、および6.6%の精度向上を提供する。
論文 参考訳(メタデータ) (2023-08-16T09:53:20Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
グラフレベルの学習は、比較、回帰、分類など、多くのタスクに適用されている。
グラフの集合を学習する伝統的なアプローチは、サブストラクチャのような手作りの特徴に依存している。
ディープラーニングは、機能を自動的に抽出し、グラフを低次元表現に符号化することで、グラフレベルの学習をグラフの規模に適応させるのに役立っている。
論文 参考訳(メタデータ) (2023-01-14T09:15:49Z) - Unbiased Graph Embedding with Biased Graph Observations [52.82841737832561]
基礎となるバイアスのないグラフから学習することで、バイアスのない表現を得るための、原則化された新しい方法を提案する。
この新たな視点に基づいて、そのような基礎となるグラフを明らかにするための2つの補完的手法を提案する。
論文 参考訳(メタデータ) (2021-10-26T18:44:37Z) - Knowledge Sheaves: A Sheaf-Theoretic Framework for Knowledge Graph
Embedding [1.5469452301122175]
知識グラフの埋め込みは, トポロジカル言語, カテゴリー言語で自然に表現されていることを示す。
知識グラフの埋め込みは、グラフ上の適切なテクスチャ知識棚の近似グローバルセクションとして記述することができる。
結果として得られる埋め込みは、特別な訓練をせずに合成関係の推論に容易に適応できる。
論文 参考訳(メタデータ) (2021-10-07T20:54:40Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
本稿では,テンソルで表されるグラフの集合に関連するデータから,スケーラブルな半教師付き学習(SSL)を実現するためのテンソルグラフ畳み込みネットワーク(TGCN)を提案する。
提案アーキテクチャは、標準的なGCNと比較して大幅に性能が向上し、最先端の敵攻撃に対処し、タンパク質間相互作用ネットワーク上でのSSL性能が著しく向上する。
論文 参考訳(メタデータ) (2020-03-15T02:33:21Z) - Relational Message Passing for Knowledge Graph Completion [78.47976646383222]
本稿では,知識グラフ補完のためのリレーショナルメッセージパッシング手法を提案する。
エッジ間でリレーショナルメッセージを反復的に送信し、近隣情報を集約する。
その結果,本手法は最先端の知識完成手法よりも大きなマージンで優れていることがわかった。
論文 参考訳(メタデータ) (2020-02-17T03:33:41Z) - Generative Adversarial Zero-Shot Relational Learning for Knowledge
Graphs [96.73259297063619]
我々は、この厄介なキュレーションを解放するために、新しい定式化、ゼロショット学習を考える。
新たに追加された関係について,テキスト記述から意味的特徴を学習しようと試みる。
我々は,GAN(Generative Adrial Networks)を活用し,テキストと知識グラフ領域の接続を確立する。
論文 参考訳(メタデータ) (2020-01-08T01:19:08Z) - Bridging Knowledge Graphs to Generate Scene Graphs [49.69377653925448]
本稿では,2つのグラフ間の情報伝達を反復的に行う新しいグラフベースニューラルネットワークを提案する。
我々のグラフブリッジネットワークであるGB-Netは、エッジとノードを連続的に推論し、相互接続されたシーンとコモンセンスグラフのリッチでヘテロジニアスな構造を同時に活用し、洗練する。
論文 参考訳(メタデータ) (2020-01-07T23:35:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。