論文の概要: Let's Verify Step by Step
- arxiv url: http://arxiv.org/abs/2305.20050v1
- Date: Wed, 31 May 2023 17:24:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-01 14:51:24.150382
- Title: Let's Verify Step by Step
- Title(参考訳): ステップバイステップで検証しましょう
- Authors: Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen
Baker, Teddy Lee, Jan Leike, John Schulman, Ilya Sutskever, Karl Cobbe
- Abstract要約: プロセスの監督は,課題を解決するためのトレーニングモデルにおいて,結果の監督を著しく上回っていることを示す。
我々のモデルは、MATHテストセットの代表部分集合から78%の問題を解く。
また、最高の報酬モデルをトレーニングするために使われる80,000段階の人間フィードバックラベルの完全なデータセットであるPRM800Kをリリースしています。
- 参考スコア(独自算出の注目度): 73.58107073356732
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, large language models have greatly improved in their ability
to perform complex multi-step reasoning. However, even state-of-the-art models
still regularly produce logical mistakes. To train more reliable models, we can
turn either to outcome supervision, which provides feedback for a final result,
or process supervision, which provides feedback for each intermediate reasoning
step. Given the importance of training reliable models, and given the high cost
of human feedback, it is important to carefully compare the both methods.
Recent work has already begun this comparison, but many questions still remain.
We conduct our own investigation, finding that process supervision
significantly outperforms outcome supervision for training models to solve
problems from the challenging MATH dataset. Our process-supervised model solves
78% of problems from a representative subset of the MATH test set.
Additionally, we show that active learning significantly improves the efficacy
of process supervision. To support related research, we also release PRM800K,
the complete dataset of 800,000 step-level human feedback labels used to train
our best reward model.
- Abstract(参考訳): 近年、大規模言語モデルは複雑な多段階推論を行う能力を大幅に改善している。
しかし、最先端モデルでさえも定期的に論理的誤りを生じる。
より信頼性の高いモデルをトレーニングするために、最終結果に対するフィードバックを提供する結果監視と、中間推論の各ステップに対するフィードバックを提供するプロセス監視に切り替えることができます。
信頼性のあるモデルのトレーニングの重要性や人的フィードバックのコストが高いことから,両手法を慎重に比較することが重要である。
最近の研究はこの比較から始まっているが、まだ多くの疑問が残っている。
我々は、プロセスの監督がトレーニングモデルの結果の監督を著しく上回り、挑戦的なMATHデータセットの問題を解決するために独自の調査を行う。
プロセス制御モデルでは,MATHテストセットの代表部分集合から78%の問題を解く。
さらに,アクティブラーニングにより,プロセス監督の効果が著しく向上することを示す。
関連する研究を支援するために、私たちは最高の報酬モデルをトレーニングするために使われる80,000段階の人間フィードバックラベルの完全なデータセットであるPRM800Kもリリースしました。
関連論文リスト
- Enhancing LLM Reasoning via Critique Models with Test-Time and Training-Time Supervision [120.40788744292739]
本稿では、推論と批判モデルの役割を分離する2人プレイヤパラダイムを提案する。
まず、批判データを収集する自動化およびスケーラブルなフレームワークであるAutoMathCritiqueを提案する。
テスト時間における難解なクエリに対するアクターのパフォーマンスを,批判モデルが一貫して改善することが実証された。
論文 参考訳(メタデータ) (2024-11-25T17:11:54Z) - SRA-MCTS: Self-driven Reasoning Augmentation with Monte Carlo Tree Search for Code Generation [14.786100203787194]
大規模な言語モデルは、単純なコード生成タスクでは例外的なパフォーマンスを示しますが、複雑な問題に対処する上での課題に直面します。
本稿では,高品質な中間推論経路を自律的に生成するモデルであるSRA-MCTSを提案する。
我々の手法は、追加の監督を必要とせず、モデル自体を通して完全に機能する。
論文 参考訳(メタデータ) (2024-11-17T12:31:04Z) - Guiding Through Complexity: What Makes Good Supervision for Hard Reasoning Tasks? [74.88417042125985]
複雑さの異なるタスクにおいて、様々な品質レベルで監視データを提供する様々なデータ駆動戦略について検討する。
ハードタスクの監視における結果エラー率が高い場合でも、そのようなデータによるトレーニングは、より簡単なサブタスクの監督を完璧に上回ります。
また,本研究の結果から,タスク・インスペクションとサブタスク・インスペクションを補完することで,顕著なパフォーマンス向上が期待できることがわかった。
論文 参考訳(メタデータ) (2024-10-27T17:55:27Z) - Self-Taught Evaluators [77.92610887220594]
本稿では,人工的なトレーニングデータのみを用いて,人間のアノテーションを使わずに即興で証明することを目的としたアプローチを提案する。
我々の自己学習評価器は、RewardBench上で75.4から88.3までの強いLDMを改善することができる。
論文 参考訳(メタデータ) (2024-08-05T17:57:02Z) - Improve Mathematical Reasoning in Language Models by Automated Process Supervision [22.72856086318912]
高品質プロセス監視データの効率的な収集のために,textitOmegaPRM という新しいモンテカルロ木探索アルゴリズムを提案する。
プロセスリワードモデル(PRM)をトレーニングするために、150万以上のプロセス監視アノテーションを収集することができます。
我々は,Gemini Proモデルの数学推論性能を改良し,MATHベンチマークで69.4%の成功率を達成した。
論文 参考訳(メタデータ) (2024-06-05T19:25:40Z) - Multi-step Problem Solving Through a Verifier: An Empirical Analysis on Model-induced Process Supervision [40.984680166762345]
データキュレーションを自動化する新しい手法であるMiPS(Model-induced Process Supervision)を導入する。
MiPSは、推論モデルを通じてこの解の完了をサンプリングし、正しい完了の比率として定義される精度を得ることによって中間段階を注釈する。
提案手法は,算数および符号化タスクにおける PaLM 2 の性能を著しく向上させる。
論文 参考訳(メタデータ) (2024-02-05T00:57:51Z) - Teaching Language Models to Self-Improve through Interactive Demonstrations [83.9421355808174]
大規模言語モデルの自己改善能力は欠如しており、より小さなモデルで学ぶことは困難である。
このような自己改善能力を持つ小型モデルのトレーニングアルゴリズムであるTriPosTを導入する。
我々は,LLaMA-7bの算数および推論タスクの性能を最大7.13%向上させることができることを示す。
論文 参考訳(メタデータ) (2023-10-20T14:11:04Z) - AdaMerging: Adaptive Model Merging for Multi-Task Learning [68.75885518081357]
本稿では,Adaptive Model Merging (AdaMerging)と呼ばれる革新的な手法を紹介する。
本来のトレーニングデータに頼ることなく、タスクレベルでも階層的にも、モデルマージの係数を自律的に学習することを目指している。
AdaMergingは、現在の最先端のタスク演算のマージ方式と比較すると、パフォーマンスが11%向上している。
論文 参考訳(メタデータ) (2023-10-04T04:26:33Z) - Learning to Modulate pre-trained Models in RL [22.812215561012874]
訓練済みモデルの微調整は、しばしば破滅的な忘れ込みに悩まされる。
本研究は、ほとんどの微調整アプローチにおいて、事前学習タスクのパフォーマンスが著しく低下していることを示す。
凍結事前学習モデルの情報フローを変調することにより,学習スキルの劣化を回避する新しい手法L2Mを提案する。
論文 参考訳(メタデータ) (2023-06-26T17:53:05Z) - Training Verifiers to Solve Math Word Problems [12.307284507186342]
GSM8Kは8.5Kの高品質な言語学的多様性を持つ小学校数学の単語問題である。
最大のトランスモデルでさえ高いテスト性能を達成できないことがわかった。
性能を向上させるため,モデル完了の正しさを判定するトレーニング検証器を提案する。
論文 参考訳(メタデータ) (2021-10-27T04:49:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。