論文の概要: VisualPRM: An Effective Process Reward Model for Multimodal Reasoning
- arxiv url: http://arxiv.org/abs/2503.10291v1
- Date: Thu, 13 Mar 2025 12:03:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-14 15:54:52.798646
- Title: VisualPRM: An Effective Process Reward Model for Multimodal Reasoning
- Title(参考訳): VisualPRM:マルチモーダル推論のための効果的なプロセスリワードモデル
- Authors: Weiyun Wang, Zhangwei Gao, Lianjie Chen, Zhe Chen, Jinguo Zhu, Xiangyu Zhao, Yangzhou Liu, Yue Cao, Shenglong Ye, Xizhou Zhu, Lewei Lu, Haodong Duan, Yu Qiao, Jifeng Dai, Wenhai Wang,
- Abstract要約: 既存のマルチモーダル大言語モデル(MLLM)の推論能力を改善するVisualPRMを導入する。
我々のモデルは7つのマルチモーダル推論ベンチマークで5.9ポイントの改善を実現している。
マルチモーダルPRMの評価のために,人間に注釈付きステップワイズラベルを付したベンチマークであるVisualProcessBenchを提案する。
- 参考スコア(独自算出の注目度): 76.35753243272521
- License:
- Abstract: We introduce VisualPRM, an advanced multimodal Process Reward Model (PRM) with 8B parameters, which improves the reasoning abilities of existing Multimodal Large Language Models (MLLMs) across different model scales and families with Best-of-N (BoN) evaluation strategies. Specifically, our model improves the reasoning performance of three types of MLLMs and four different model scales. Even when applied to the highly capable InternVL2.5-78B, it achieves a 5.9-point improvement across seven multimodal reasoning benchmarks. Experimental results show that our model exhibits superior performance compared to Outcome Reward Models and Self-Consistency during BoN evaluation. To facilitate the training of multimodal PRMs, we construct a multimodal process supervision dataset VisualPRM400K using an automated data pipeline. For the evaluation of multimodal PRMs, we propose VisualProcessBench, a benchmark with human-annotated step-wise correctness labels, to measure the abilities of PRMs to detect erroneous steps in multimodal reasoning tasks. We hope that our work can inspire more future research and contribute to the development of MLLMs. Our model, data, and benchmark are released in https://internvl.github.io/blog/2025-03-13-VisualPRM/.
- Abstract(参考訳): 8Bパラメータを持つ高度マルチモーダルプロセスリワードモデル(PRM)であるVisualPRMを導入し、既存のマルチモーダル大規模言語モデル(MLLM)の様々なモデルスケールおよびBest-of-N (BoN)評価戦略を持つ家族に対する推論能力を向上させる。
具体的には、3種類のMLLMと4種類のモデルスケールの推論性能を改善する。
高性能なInternVL2.5-78Bに適用しても、7つのマルチモーダル推論ベンチマークで5.9ポイントの改善が達成される。
実験の結果,BoN評価において,アウトカム・リワードモデルや自己整合性よりも優れた性能を示した。
マルチモーダルPRMのトレーニングを容易にするため,自動データパイプラインを用いたマルチモーダルプロセス監視データセットVisualPRM400Kを構築した。
マルチモーダル PRM の評価のために,マルチモーダル推論タスクにおける誤ステップ検出のための PRM の能力を測定するために,ヒューマンアノテートされた段階的正当性ラベル付きベンチマーク VisualProcessBench を提案する。
今後の研究に刺激を与え、MLLMの開発に貢献できることを願っています。
私たちのモデル、データ、ベンチマークはhttps://internvl.github.io/blog/2025-03-13-VisualPRM/で公開されています。
関連論文リスト
- Multimodal RewardBench: Holistic Evaluation of Reward Models for Vision Language Models [82.92771279118888]
マルチモーダル報酬モデルを評価するためのエキスパートアノテートベンチマークであるMultimodal RewardBenchを紹介する。
我々のデータセットは、様々な視覚言語モデルから収集された5,211個の注釈付き(プロンプト、選択された応答、拒否された応答)三つ子からなる。
Gemini 1.5 ProやClaude 3.5 Sonnetといったトップパフォーマンスモデルでさえ、全体的な精度は72%に過ぎません。
論文 参考訳(メタデータ) (2025-02-20T01:48:13Z) - GME: Improving Universal Multimodal Retrieval by Multimodal LLMs [43.457928045291915]
Universal Multimodal Retrieval (UMR) は、統一モデルを用いて様々なモダリティを探索することを目的としている。
これまで、テキストデータのみを用いてUMRを実現するためにMLLM(Multimodal large language model)を採用してきた。
論文 参考訳(メタデータ) (2024-12-22T04:40:24Z) - Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling [128.24325909395188]
InternVL 2.5は、InternVL 2.0上に構築された高度マルチモーダル大規模言語モデル(MLLM)シリーズである。
InternVL 2.5は、GPT-4oやClaude-3.5-Sonnetといった主要な商用モデルと競合する競争力を持つ。
このモデルが、マルチモーダルAIシステムの開発と適用のための新しい標準を設定することで、オープンソースコミュニティに貢献できることを願っています。
論文 参考訳(メタデータ) (2024-12-06T18:57:08Z) - Enhancing the Reasoning Ability of Multimodal Large Language Models via Mixed Preference Optimization [65.64108848398696]
本稿では,MLLMのマルチモーダル推論能力を高めるための選好最適化プロセスを提案する。
我々は,マルチモーダルCoT性能を向上する,MPO(Mixed Preference Optimization)と呼ばれるシンプルで効果的な手法を開発した。
我々のモデルであるInternVL2-8B-MPOは、MathVista上で67.0の精度を実現し、InternVL2-8Bを8.7ポイント上回り、10倍のInternVL2-76Bに匹敵する性能を達成する。
論文 参考訳(メタデータ) (2024-11-15T18:59:27Z) - Large Language Model Evaluation Via Multi AI Agents: Preliminary results [3.8066447473175304]
本稿では,多言語モデル(LLM)の性能評価と比較を目的とした,新しいマルチエージェントAIモデルを提案する。
我々のモデルは8つの異なるAIエージェントで構成されており、それぞれが異なる先進言語モデルから共通の記述に基づいてコードを取得する責任がある。
我々はHumanEvalベンチマークを検証エージェントに統合し、生成されたコードのパフォーマンスを評価し、それぞれの能力と効率について洞察を提供する。
論文 参考訳(メタデータ) (2024-04-01T10:06:04Z) - MM-BigBench: Evaluating Multimodal Models on Multimodal Content
Comprehension Tasks [56.60050181186531]
MM-BigBenchを導入し、様々なモデルや命令のパフォーマンスを広範囲に評価する。
本稿では,6タスクにまたがる14のマルチモーダルデータセット上で,20の言語モデル (14 MLLM) を評価し,各タスクに10の指示を与え,新しい洞察を導き出す。
論文 参考訳(メタデータ) (2023-10-13T11:57:04Z) - Improving Discriminative Multi-Modal Learning with Large-Scale
Pre-Trained Models [51.5543321122664]
本稿では,大規模な事前学習型ユニモーダルモデルを用いて,識別型マルチモーダル学習を向上する方法について検討する。
MMLoRA(Multi-Modal Low-Rank Adaptation Learning)を導入する。
論文 参考訳(メタデータ) (2023-10-08T15:01:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。