Incorporating Domain Knowledge in Deep Neural Networks for Discrete
Choice Models
- URL: http://arxiv.org/abs/2306.00016v1
- Date: Tue, 30 May 2023 12:53:55 GMT
- Title: Incorporating Domain Knowledge in Deep Neural Networks for Discrete
Choice Models
- Authors: Shadi Haj-Yahia, Omar Mansour, Tomer Toledo
- Abstract summary: This paper proposes a framework that expands the potential of data-driven approaches for DCM.
It includes pseudo data samples that represent required relationships and a loss function that measures their fulfillment.
A case study demonstrates the potential of this framework for discrete choice analysis.
- Score: 0.5801044612920815
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Discrete choice models (DCM) are widely employed in travel demand analysis as
a powerful theoretical econometric framework for understanding and predicting
choice behaviors. DCMs are formed as random utility models (RUM), with their
key advantage of interpretability. However, a core requirement for the
estimation of these models is a priori specification of the associated utility
functions, making them sensitive to modelers' subjective beliefs. Recently,
machine learning (ML) approaches have emerged as a promising avenue for
learning unobserved non-linear relationships in DCMs. However, ML models are
considered "black box" and may not correspond with expected relationships. This
paper proposes a framework that expands the potential of data-driven approaches
for DCM by supporting the development of interpretable models that incorporate
domain knowledge and prior beliefs through constraints. The proposed framework
includes pseudo data samples that represent required relationships and a loss
function that measures their fulfillment, along with observed data, for model
training. The developed framework aims to improve model interpretability by
combining ML's specification flexibility with econometrics and interpretable
behavioral analysis. A case study demonstrates the potential of this framework
for discrete choice analysis.
Related papers
- Benchmarks as Microscopes: A Call for Model Metrology [76.64402390208576]
Modern language models (LMs) pose a new challenge in capability assessment.
To be confident in our metrics, we need a new discipline of model metrology.
arXiv Detail & Related papers (2024-07-22T17:52:12Z) - SynthTree: Co-supervised Local Model Synthesis for Explainable Prediction [15.832975722301011]
We propose a novel method to enhance explainability with minimal accuracy loss.
We have developed novel methods for estimating nodes by leveraging AI techniques.
Our findings highlight the critical role that statistical methodologies can play in advancing explainable AI.
arXiv Detail & Related papers (2024-06-16T14:43:01Z) - The Buffer Mechanism for Multi-Step Information Reasoning in Language Models [52.77133661679439]
Investigating internal reasoning mechanisms of large language models can help us design better model architectures and training strategies.
In this study, we constructed a symbolic dataset to investigate the mechanisms by which Transformer models employ vertical thinking strategy.
We proposed a random matrix-based algorithm to enhance the model's reasoning ability, resulting in a 75% reduction in the training time required for the GPT-2 model.
arXiv Detail & Related papers (2024-05-24T07:41:26Z) - Distribution-consistency Structural Causal Models [6.276417011421679]
We introduce a novel textitdistribution-consistency assumption, and in alignment with it, we propose the Distribution-consistency Structural Causal Models (DiscoSCMs)
To concretely reveal the enhanced model capacity, we introduce a new identifiable causal parameter, textitthe probability of consistency, which holds practical significance within DiscoSCM alone.
arXiv Detail & Related papers (2024-01-29T06:46:15Z) - Relational Concept Bottleneck Models [13.311396882130033]
Concept Bottleneck Models (CBMs) are not designed to solve problems.
R-CBMs are capable of both representing standard CBMs and relational GNNs.
In particular, we show that R-CBMs support the generation of concept-based explanations.
arXiv Detail & Related papers (2023-08-23T08:25:33Z) - Variable Importance Matching for Causal Inference [73.25504313552516]
We describe a general framework called Model-to-Match that achieves these goals.
Model-to-Match uses variable importance measurements to construct a distance metric.
We operationalize the Model-to-Match framework with LASSO.
arXiv Detail & Related papers (2023-02-23T00:43:03Z) - Attitudes and Latent Class Choice Models using Machine learning [0.0]
We present a method of efficiently incorporating attitudinal indicators in the specification of Latent Class Choice Models (LCCM)
This formulation overcomes structural equations in its capability of exploring the relationship between the attitudinal indicators and the decision choice.
We test our proposed framework for estimating a Car-Sharing (CS) service subscription choice with stated preference data from Copenhagen, Denmark.
arXiv Detail & Related papers (2023-02-20T10:03:01Z) - GAM(e) changer or not? An evaluation of interpretable machine learning
models based on additive model constraints [5.783415024516947]
This paper investigates a series of intrinsically interpretable machine learning models.
We evaluate the prediction qualities of five GAMs as compared to six traditional ML models.
arXiv Detail & Related papers (2022-04-19T20:37:31Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
In modern data science, it is more interesting to understand the properties of the model, which parts could be replaced to obtain better results.
We use multi-objective evolutionary optimization for composite data-driven model learning to obtain the algorithm's desired properties.
arXiv Detail & Related papers (2021-07-07T11:17:09Z) - Explainable Matrix -- Visualization for Global and Local
Interpretability of Random Forest Classification Ensembles [78.6363825307044]
We propose Explainable Matrix (ExMatrix), a novel visualization method for Random Forest (RF) interpretability.
It employs a simple yet powerful matrix-like visual metaphor, where rows are rules, columns are features, and cells are rules predicates.
ExMatrix applicability is confirmed via different examples, showing how it can be used in practice to promote RF models interpretability.
arXiv Detail & Related papers (2020-05-08T21:03:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.