論文の概要: Assessing the Generalizability of a Performance Predictive Model
- arxiv url: http://arxiv.org/abs/2306.00040v1
- Date: Wed, 31 May 2023 12:50:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-02 20:27:23.168852
- Title: Assessing the Generalizability of a Performance Predictive Model
- Title(参考訳): 性能予測モデルの一般化可能性の評価
- Authors: Ana Nikolikj, Gjorgjina Cenikj, Gordana Ispirova, Diederick Vermetten,
Ryan Dieter Lang, Andries Petrus Engelbrecht, Carola Doerr, Peter
Koro\v{s}ec, Tome Eftimov
- Abstract要約: 本稿では,アルゴリズム性能の予測モデルの一般化可能性を評価するワークフローを提案する。
その結果,ランドスケープの特徴空間における一般化可能性パターンが性能空間に反映されることが示唆された。
- 参考スコア(独自算出の注目度): 0.6070952062639761
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A key component of automated algorithm selection and configuration, which in
most cases are performed using supervised machine learning (ML) methods is a
good-performing predictive model. The predictive model uses the feature
representation of a set of problem instances as input data and predicts the
algorithm performance achieved on them. Common machine learning models struggle
to make predictions for instances with feature representations not covered by
the training data, resulting in poor generalization to unseen problems. In this
study, we propose a workflow to estimate the generalizability of a predictive
model for algorithm performance, trained on one benchmark suite to another. The
workflow has been tested by training predictive models across benchmark suites
and the results show that generalizability patterns in the landscape feature
space are reflected in the performance space.
- Abstract(参考訳): 自動アルゴリズムの選択と構成の重要なコンポーネントは、ほとんどの場合、教師付き機械学習(ML)メソッドを使用して実行されるが、優れたパフォーマンスの予測モデルである。
予測モデルは、問題インスタンスのセットの特徴表現を入力データとして使用し、それらで達成されたアルゴリズム性能を予測する。
一般的な機械学習モデルは、トレーニングデータでカバーされていない特徴表現を持つインスタンスの予測に苦労する。
本研究では,あるベンチマークスイートから別のベンチマークスイートへトレーニングされたアルゴリズム性能予測モデルの一般化可能性を評価するワークフローを提案する。
このワークフローはベンチマークスイート間で予測モデルをトレーニングすることでテストされ、その結果、ランドスケープの特徴空間における一般化可能性パターンがパフォーマンス空間に反映されていることが示された。
関連論文リスト
- PAMI: partition input and aggregate outputs for model interpretation [69.42924964776766]
本研究では、深層学習モデルが局所的な特徴を集約してモデル予測を行うという観察に基づいて、PAMIと呼ばれるシンプルで効果的な可視化フレームワークを提案する。
基本的な考え方は、入力の大多数を隠蔽し、元のモデル予測に対する保存された入力部の相対的な寄与として対応するモデル出力を使用することである。
複数のタスクに対する大規模な実験により,提案手法は,クラス固有の入力領域をより正確に見つけるために,既存の可視化手法よりも優れていることを確認した。
論文 参考訳(メタデータ) (2023-02-07T08:48:34Z) - RF+clust for Leave-One-Problem-Out Performance Prediction [0.9281671380673306]
本稿では,LOPO(Left-one-problem-out)のパフォーマンス予測について検討する。
我々は、標準ランダムフォレスト(RF)モデル予測が性能値の重み付き平均値で校正することで改善できるかどうかを解析する。
論文 参考訳(メタデータ) (2023-01-23T16:14:59Z) - A prediction and behavioural analysis of machine learning methods for
modelling travel mode choice [0.26249027950824505]
我々は、モデル選択に影響を及ぼす可能性のある重要な要因の観点から、複数のモデリング問題に対して異なるモデリングアプローチを体系的に比較する。
その結果,非凝集性予測性能が最も高いモデルでは,行動指標やアグリゲーションモードのシェアが低下することが示唆された。
MNLモデルは様々な状況において堅牢に機能するが、ML手法はWillingness to Payのような行動指標の推定を改善することができる。
論文 参考訳(メタデータ) (2023-01-11T11:10:32Z) - Generalization Properties of Retrieval-based Models [50.35325326050263]
検索ベースの機械学習手法は、幅広い問題で成功をおさめた。
これらのモデルの約束を示す文献が増えているにもかかわらず、そのようなモデルの理論的基盤はいまだに解明されていない。
本稿では,その一般化能力を特徴付けるために,検索ベースモデルの形式的処理を行う。
論文 参考訳(メタデータ) (2022-10-06T00:33:01Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - Pathologies of Pre-trained Language Models in Few-shot Fine-tuning [50.3686606679048]
実例が少ない事前学習言語モデルはラベル間に強い予測バイアスを示すことを示す。
わずかな微調整で予測バイアスを軽減できるが,本分析では,非タスク関連の特徴を捉えることで,モデルの性能向上を図っている。
これらの観察は、より少ない例でモデルのパフォーマンスを追求することは、病理学的予測行動を引き起こす可能性があることを警告する。
論文 参考訳(メタデータ) (2022-04-17T15:55:18Z) - Non-Clairvoyant Scheduling with Predictions Revisited [77.86290991564829]
非論理的スケジューリングでは、優先度不明な処理条件でジョブをスケジューリングするためのオンライン戦略を見つけることが課題である。
我々はこのよく研究された問題を、アルゴリズム設計に(信頼できない)予測を統合する、最近人気の高い学習強化された設定で再検討する。
これらの予測には所望の特性があり, 高い性能保証を有するアルゴリズムと同様に, 自然な誤差測定が可能であることを示す。
論文 参考訳(メタデータ) (2022-02-21T13:18:11Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
視覚的MBRLアルゴリズムにおける予測モデルの設計決定について検討する。
潜在空間の使用など、しばしば重要と見なされる設計上の決定は、タスクのパフォーマンスにはほとんど影響しないことが分かりました。
我々は,この現象が探索とどのように関係しているか,および標準ベンチマークにおける下位スコーリングモデルのいくつかが,同じトレーニングデータでトレーニングされた場合のベストパフォーマンスモデルと同等の性能を発揮するかを示す。
論文 参考訳(メタデータ) (2020-12-08T18:03:21Z) - Surrogate Locally-Interpretable Models with Supervised Machine Learning
Algorithms [8.949704905866888]
近年,従来の統計的手法よりも予測性能が優れているため,機械学習アルゴリズムが普及している。
主な焦点は解釈可能性であり、結果として得られるサロゲートモデルは、合理的に優れた予測性能を持つ。
論文 参考訳(メタデータ) (2020-07-28T23:46:16Z) - Does imputation matter? Benchmark for predictive models [5.802346990263708]
本稿では,予測モデルに対するデータ計算アルゴリズムの実証的効果を体系的に評価する。
主な貢献は,(1)実生活の分類タスクに基づく経験的ベンチマークのための一般的な手法の推薦である。
論文 参考訳(メタデータ) (2020-07-06T15:47:36Z) - Modeling Generalization in Machine Learning: A Methodological and
Computational Study [0.8057006406834467]
我々は、機械学習の一般化を評価する際に、トレーニングデータの凸殻の概念を用いる。
機械学習モデルの一般化能力と次元に関するすべての指標との予期せぬ弱い関係を観察する。
論文 参考訳(メタデータ) (2020-06-28T19:06:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。