Causal Intervention for Measuring Confidence in Drug-Target Interaction
Prediction
- URL: http://arxiv.org/abs/2306.00041v2
- Date: Tue, 14 Nov 2023 13:36:53 GMT
- Title: Causal Intervention for Measuring Confidence in Drug-Target Interaction
Prediction
- Authors: Wenting Ye, Chen Li, Yang Xie, Wen Zhang, Hong-Yu Zhang, Bowen Wang,
Debo Cheng, Zaiwen Feng
- Abstract summary: We focus on the problem of drug-target interactions, with knowledge mapping as the core technology.
A causal intervention-based confidence measure is employed to assess the triplet score to improve the accuracy of the drug-target interaction prediction model.
- Score: 17.91458766354762
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Identifying and discovering drug-target interactions(DTIs) are vital steps in
drug discovery and development. They play a crucial role in assisting
scientists in finding new drugs and accelerating the drug development process.
Recently, knowledge graph and knowledge graph embedding (KGE) models have made
rapid advancements and demonstrated impressive performance in drug discovery.
However, such models lack authenticity and accuracy in drug target
identification, leading to an increased misjudgment rate and reduced drug
development efficiency. To address these issues, we focus on the problem of
drug-target interactions, with knowledge mapping as the core technology.
Specifically, a causal intervention-based confidence measure is employed to
assess the triplet score to improve the accuracy of the drug-target interaction
prediction model. Experimental results demonstrate that the developed
confidence measurement method based on causal intervention can significantly
enhance the accuracy of DTI link prediction, particularly for high-precision
models. The predicted results are more valuable in guiding the design and
development of subsequent drug development experiments, thereby significantly
improving the efficiency of drug development.
Related papers
- A Cross-Field Fusion Strategy for Drug-Target Interaction Prediction [85.2792480737546]
Existing methods fail to utilize global protein information during DTI prediction.
Cross-field information fusion strategy is employed to acquire local and global protein information.
Siamese drug-target interaction SiamDTI prediction method achieves higher accuracy levels than other state-of-the-art (SOTA) methods on novel drugs and targets.
arXiv Detail & Related papers (2024-05-23T13:25:20Z) - drGAT: Attention-Guided Gene Assessment of Drug Response Utilizing a Drug-Cell-Gene Heterogeneous Network [9.637695046701493]
drGAT is a graph deep learning model that can predict sensitivity to drugs.
drGAT has superior performance over existing models, achieving 78% accuracy and 76% F1 score for 269 DNA-damaging compounds.
Our method can be used to accurately predict sensitivity to drugs and may be useful in the identification of biomarkers relating to the treatment of cancer patients.
arXiv Detail & Related papers (2024-05-14T22:16:52Z) - DTIAM: A unified framework for predicting drug-target interactions,
binding affinities and activation/inhibition mechanisms [9.671391525450716]
We introduce a unified framework called DTIAM, which aims to predict interactions, binding affinities, and activation/inhibition mechanisms between drugs and targets.
DTIAM learns drug and target representations from large amounts of label-free data through self-supervised pre-training.
It achieves substantial performance improvement over other state-of-the-art methods in all tasks, particularly in the cold start scenario.
arXiv Detail & Related papers (2023-12-23T13:27:41Z) - Learning to Denoise Biomedical Knowledge Graph for Robust Molecular Interaction Prediction [50.7901190642594]
We propose BioKDN (Biomedical Knowledge Graph Denoising Network) for robust molecular interaction prediction.
BioKDN refines the reliable structure of local subgraphs by denoising noisy links in a learnable manner.
It maintains consistent and robust semantics by smoothing relations around the target interaction.
arXiv Detail & Related papers (2023-12-09T07:08:00Z) - Emerging Drug Interaction Prediction Enabled by Flow-based Graph Neural
Network with Biomedical Network [69.16939798838159]
We propose EmerGNN, a graph neural network (GNN) that can effectively predict interactions for emerging drugs.
EmerGNN learns pairwise representations of drugs by extracting the paths between drug pairs, propagating information from one drug to the other, and incorporating the relevant biomedical concepts on the paths.
Overall, EmerGNN has higher accuracy than existing approaches in predicting interactions for emerging drugs and can identify the most relevant information on the biomedical network.
arXiv Detail & Related papers (2023-11-15T06:34:00Z) - PGraphDTA: Improving Drug Target Interaction Prediction using Protein
Language Models and Contact Maps [4.590060921188914]
Key aspect of drug discovery involves identifying novel drug-target (DT) interactions.
Protein-ligand interactions exhibit a continuum of binding strengths, known as binding affinity.
We propose novel enhancements to enhance their performance.
arXiv Detail & Related papers (2023-10-06T05:00:25Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
Drug-Target Affinity (DTA) is of vital importance in early-stage drug discovery.
wet experiments remain the most reliable method, but they are time-consuming and resource-intensive.
Existing methods have primarily focused on developing techniques based on the available DTA data, without adequately addressing the data scarcity issue.
We present the SSM-DTA framework, which incorporates three simple yet highly effective strategies.
arXiv Detail & Related papers (2022-06-20T14:53:25Z) - Multi-View Substructure Learning for Drug-Drug Interaction Prediction [69.34322811160912]
We propose a novel multi- view drug substructure network for DDI prediction (MSN-DDI)
MSN-DDI learns chemical substructures from both the representations of the single drug (intra-view) and the drug pair (inter-view) simultaneously and utilizes the substructures to update the drug representation iteratively.
Comprehensive evaluations demonstrate that MSN-DDI has almost solved DDI prediction for existing drugs by achieving a relatively improved accuracy of 19.32% and an over 99% accuracy under the transductive setting.
arXiv Detail & Related papers (2022-03-28T05:44:29Z) - An Interpretable Framework for Drug-Target Interaction with Gated Cross
Attention [4.746451824931381]
In this study, we propose a novel interpretable framework that can provide reasonable cues for the interaction sites.
We elaborately design a gated cross-attention mechanism that crossly attends drug and target features by constructing explicit interactions between these features.
The experimental results show the efficacy of the proposed method in two DTI datasets.
arXiv Detail & Related papers (2021-09-17T05:53:40Z) - MolDesigner: Interactive Design of Efficacious Drugs with Deep Learning [61.74958429818077]
MolDesigner is a human-in-the-loop web user-interface (UI) for drug developers.
A developer can draw a drug molecule in the interface.
In the backend, more than 17 state-of-the-art DL models generate predictions on important indices that are crucial for a drug's efficacy.
arXiv Detail & Related papers (2020-10-05T21:25:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.