Drug-Target Interaction/Affinity Prediction: Deep Learning Models and Advances Review
- URL: http://arxiv.org/abs/2502.15346v1
- Date: Fri, 21 Feb 2025 10:00:43 GMT
- Title: Drug-Target Interaction/Affinity Prediction: Deep Learning Models and Advances Review
- Authors: Ali Vefghi, Zahed Rahmati, Mohammad Akbari,
- Abstract summary: Deep learning models have been presented to overcome the challenges of interaction prediction.<n>A total of 180 prediction methods for drug-target interactions were analyzed.
- Score: 4.364576564103288
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Drug discovery remains a slow and expensive process that involves many steps, from detecting the target structure to obtaining approval from the Food and Drug Administration (FDA), and is often riddled with safety concerns. Accurate prediction of how drugs interact with their targets and the development of new drugs by using better methods and technologies have immense potential to speed up this process, ultimately leading to faster delivery of life-saving medications. Traditional methods used for drug-target interaction prediction show limitations, particularly in capturing complex relationships between drugs and their targets. As an outcome, deep learning models have been presented to overcome the challenges of interaction prediction through their precise and efficient end results. By outlining promising research avenues and models, each with a different solution but similar to the problem, this paper aims to give researchers a better idea of methods for even more accurate and efficient prediction of drug-target interaction, ultimately accelerating the development of more effective drugs. A total of 180 prediction methods for drug-target interactions were analyzed throughout the period spanning 2016 to 2025 using different frameworks based on machine learning, mainly deep learning and graph neural networks. Additionally, this paper discusses the novelty, architecture, and input representation of these models.
Related papers
- Small Molecule Drug Discovery Through Deep Learning:Progress, Challenges, and Opportunities [34.72068278499029]
With the rapid development of deep learning (DL) techniques, DL-based small molecule drug discovery methods have achieved excellent performance.<n>This paper systematically summarize and generalize the recent key tasks and representative techniques in DL-based small molecule drug discovery.
arXiv Detail & Related papers (2025-02-13T05:24:52Z) - A Cross-Field Fusion Strategy for Drug-Target Interaction Prediction [85.2792480737546]
Existing methods fail to utilize global protein information during DTI prediction.
Cross-field information fusion strategy is employed to acquire local and global protein information.
Siamese drug-target interaction SiamDTI prediction method achieves higher accuracy levels than other state-of-the-art (SOTA) methods on novel drugs and targets.
arXiv Detail & Related papers (2024-05-23T13:25:20Z) - Emerging Drug Interaction Prediction Enabled by Flow-based Graph Neural
Network with Biomedical Network [69.16939798838159]
We propose EmerGNN, a graph neural network (GNN) that can effectively predict interactions for emerging drugs.
EmerGNN learns pairwise representations of drugs by extracting the paths between drug pairs, propagating information from one drug to the other, and incorporating the relevant biomedical concepts on the paths.
Overall, EmerGNN has higher accuracy than existing approaches in predicting interactions for emerging drugs and can identify the most relevant information on the biomedical network.
arXiv Detail & Related papers (2023-11-15T06:34:00Z) - PGraphDTA: Improving Drug Target Interaction Prediction using Protein
Language Models and Contact Maps [4.590060921188914]
Key aspect of drug discovery involves identifying novel drug-target (DT) interactions.
Protein-ligand interactions exhibit a continuum of binding strengths, known as binding affinity.
We propose novel enhancements to enhance their performance.
arXiv Detail & Related papers (2023-10-06T05:00:25Z) - Causal Intervention for Measuring Confidence in Drug-Target Interaction
Prediction [17.91458766354762]
We focus on the problem of drug-target interactions, with knowledge mapping as the core technology.
A causal intervention-based confidence measure is employed to assess the triplet score to improve the accuracy of the drug-target interaction prediction model.
arXiv Detail & Related papers (2023-05-31T13:13:45Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
Drug combination therapy is a well-established strategy for disease treatment with better effectiveness and less safety degradation.
Deep learning models have emerged as an efficient way to discover synergistic combinations.
Our framework achieves state-of-the-art results in comparison with other deep learning-based methods.
arXiv Detail & Related papers (2023-01-14T15:07:43Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
Drug-Target Affinity (DTA) is of vital importance in early-stage drug discovery.
wet experiments remain the most reliable method, but they are time-consuming and resource-intensive.
Existing methods have primarily focused on developing techniques based on the available DTA data, without adequately addressing the data scarcity issue.
We present the SSM-DTA framework, which incorporates three simple yet highly effective strategies.
arXiv Detail & Related papers (2022-06-20T14:53:25Z) - Multi-View Substructure Learning for Drug-Drug Interaction Prediction [69.34322811160912]
We propose a novel multi- view drug substructure network for DDI prediction (MSN-DDI)
MSN-DDI learns chemical substructures from both the representations of the single drug (intra-view) and the drug pair (inter-view) simultaneously and utilizes the substructures to update the drug representation iteratively.
Comprehensive evaluations demonstrate that MSN-DDI has almost solved DDI prediction for existing drugs by achieving a relatively improved accuracy of 19.32% and an over 99% accuracy under the transductive setting.
arXiv Detail & Related papers (2022-03-28T05:44:29Z) - Deep learning for drug repurposing: methods, databases, and applications [54.08583498324774]
Repurposing existing drugs for new therapies is an attractive solution that accelerates drug development at reduced experimental costs.
In this review, we introduce guidelines on how to utilize deep learning methodologies and tools for drug repurposing.
arXiv Detail & Related papers (2022-02-08T09:42:08Z) - Multi-View Self-Attention for Interpretable Drug-Target Interaction
Prediction [4.307720252429733]
In machine learning approaches, the numerical representation of molecules is critical to the performance of the model.
We propose a self-attention-based multi-view representation learning approach for modeling drug-target interactions.
arXiv Detail & Related papers (2020-05-01T14:28:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.