論文の概要: Bell sampling from quantum circuits
- arxiv url: http://arxiv.org/abs/2306.00083v4
- Date: Thu, 1 Feb 2024 02:14:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-02 19:52:28.398747
- Title: Bell sampling from quantum circuits
- Title(参考訳): 量子回路からのベルサンプリング
- Authors: Dominik Hangleiter and Michael J. Gullans
- Abstract要約: 我々は、量子コンピュータのベンチマークに使用できる、量子計算の普遍的なモデル、ベルサンプリングを見つける。
ベルサンプリングでは、ベル基底の量子回路で作成された状態の2つのコピーを測定する。
ベルのサンプルは古典的に作りやすく、同時に回路シャドウと呼ばれるものを構成することが示されています。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: A central challenge in the verification of quantum computers is benchmarking
their performance as a whole and demonstrating their computational
capabilities. In this work, we find a universal model of quantum computation,
Bell sampling, that can be used for both of those tasks and thus provides an
ideal stepping stone towards fault-tolerance. In Bell sampling, we measure two
copies of a state prepared by a quantum circuit in the transversal Bell basis.
We show that the Bell samples are classically intractable to produce and at the
same time constitute what we call a circuit shadow: from the Bell samples we
can efficiently extract information about the quantum circuit preparing the
state, as well as diagnose circuit errors. In addition to known properties that
can be efficiently extracted from Bell samples, we give two new and efficient
protocols, a test for the depth of the circuit and an algorithm to estimate a
lower bound to the number of T gates in the circuit. With some additional
measurements, our algorithm learns a full description of states prepared by
circuits with low T-count.
- Abstract(参考訳): 量子コンピュータの検証における中心的な課題は、パフォーマンス全体をベンチマークし、計算能力を示すことである。
本研究は, 量子計算の普遍的モデルであるベルサンプリング(Bell sample)を発見し, 両課題に有効であり, 耐故障性に向けた理想的なステップストーンを提供する。
ベルサンプリングでは,逆ベル基底の量子回路で作成された状態の2つのコピーを測定する。
ベルサンプルは古典的に抽出可能であり、同時に回路シャドーと呼ばれるものを構成することを示し、ベルサンプルから状態を作成する量子回路に関する情報を効率的に抽出し、回路エラーを診断することができる。
ベルサンプルから効率的に抽出できる既知の特性に加えて、回路の深さに対するテストと、回路内のtゲート数に対する下限を推定するアルゴリズムという2つの新しい効率的なプロトコルを与える。
さらに,T数が少ない回路で作成した状態の完全な記述をアルゴリズムで学習する。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - FragQC: An Efficient Quantum Error Reduction Technique using Quantum
Circuit Fragmentation [4.2754140179767415]
誤差確率が一定の閾値を超えると、量子回路をサブ回路に切断するソフトウェアツールであるFragQCを提示する。
回路を切断せずに直接実行した場合の忠実度は14.83%増加し、8.45%が最先端のICP法である。
論文 参考訳(メタデータ) (2023-09-30T17:38:31Z) - Verifiable measurement-based quantum random sampling with trapped ions [0.7978498178655667]
量子コンピュータは、今、彼らの古典的なコンピュータよりも優れています。
この利点を示す方法の1つは、量子コンピューティングデバイス上で実行される量子ランダムサンプリングである。
ここでは、量子計算の計測に基づくモデルにおいて、効率よく検証可能な量子ランダムサンプリングを実験的に示す。
論文 参考訳(メタデータ) (2023-07-26T18:00:03Z) - Schrödinger as a Quantum Programmer: Estimating Entanglement via Steering [3.187381965457262]
我々は、量子ステアリング効果を用いて、一般的な二部状態の分離性をテストし、定量化する量子アルゴリズムを開発した。
我々の発見は、ステアリング、絡み合い、量子アルゴリズム、量子計算複雑性理論の間の有意義な関係を提供する。
論文 参考訳(メタデータ) (2023-03-14T13:55:06Z) - Initial-State Dependent Optimization of Controlled Gate Operations with
Quantum Computer [1.2019888796331233]
制御ゲートから冗長な制御操作を取り除くことを目的としたAQCELと呼ばれる新しい回路を導入する。
ベンチマークとして、AQCELは高エネルギー物理学における最終状態の放射をモデル化するために設計された量子アルゴリズムにデプロイされる。
我々は、AQCEL最適化回路が、ゲート数がはるかに少ない等価な最終状態を生成できることを実証した。
論文 参考訳(メタデータ) (2022-09-06T09:19:07Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vaziraniアルゴリズムは、オラクルに符号化されたビット文字列を決定できる。
我々はベルンシュタイン・ヴァジラニアルゴリズムの量子資源を詳細に分析する。
絡み合いがない場合、初期状態における量子コヒーレンス量とアルゴリズムの性能が直接関係していることが示される。
論文 参考訳(メタデータ) (2022-05-26T20:32:36Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
パラメータ化量子回路で完了した2プレーヤゼロサムゲームとして,両部絡み検出を再構成する。
このプロトコルを線形光ネットワーク上で実験的に実装し、5量子量子純状態と2量子量子混合状態の両部絡み検出に有効であることを示す。
論文 参考訳(メタデータ) (2022-03-15T09:46:45Z) - Fast Swapping in a Quantum Multiplier Modelled as a Queuing Network [64.1951227380212]
量子回路をキューネットワークとしてモデル化することを提案する。
提案手法はスケーラビリティが高く,大規模量子回路のコンパイルに必要となる潜在的な速度と精度を有する。
論文 参考訳(メタデータ) (2021-06-26T10:55:52Z) - Quantum Search for Scaled Hash Function Preimages [1.3299507495084417]
本稿では,Groverのアルゴリズムを量子シミュレーターに実装し,2つのスケールしたハッシュ関数の前像の量子探索を行う。
我々は,Groverのアルゴリズムのいくつかのステップの後に量子レジスタをサンプリングしてショートカットを提案する戦略は,誤差軽減の観点からは限界的な実用的優位性しか得られないことを示した。
論文 参考訳(メタデータ) (2020-09-01T18:00:02Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUINTIFYは、量子回路の定量的解析のためのオープンソースのフレームワークである。
Google Cirqをベースにしており、Clifford+T回路を念頭に開発されている。
ベンチマークのため、QUINTIFYは量子メモリと量子演算回路を含む。
論文 参考訳(メタデータ) (2020-07-21T15:36:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。