論文の概要: Transfer Learning for Underrepresented Music Generation
- arxiv url: http://arxiv.org/abs/2306.00281v1
- Date: Thu, 1 Jun 2023 01:53:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-02 18:39:25.146511
- Title: Transfer Learning for Underrepresented Music Generation
- Title(参考訳): 過小表現音楽生成のための転送学習
- Authors: Anahita Doosti and Matthew Guzdial
- Abstract要約: 我々は,イランの民謡を,大規模な生成音楽モデルであるMusicVAEのOODジャンルの例とみなす。
イランのフォーク・ミュージック・データセットにMusicVAEを効率よく適応させることで、将来、あまり表現されていない音楽ジャンルを創出できる可能性が示唆された。
- 参考スコア(独自算出の注目度): 0.9645196221785693
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper investigates a combinational creativity approach to transfer
learning to improve the performance of deep neural network-based models for
music generation on out-of-distribution (OOD) genres. We identify Iranian folk
music as an example of such an OOD genre for MusicVAE, a large generative music
model. We find that a combinational creativity transfer learning approach can
efficiently adapt MusicVAE to an Iranian folk music dataset, indicating
potential for generating underrepresented music genres in the future.
- Abstract(参考訳): 本稿では,音楽生成のための深層ニューラルネットワークモデル(ood)の性能を向上させるために,トランスファー学習のための組み合わせ創造性アプローチについて検討する。
我々は,イランの民謡を,大規模な生成音楽モデルであるMusicVAEのOODジャンルの例として挙げる。
イランのフォーク・ミュージック・データセットにMusicVAEを効率よく適応させることで、将来、あまり表現されていない音楽ジャンルを創出できる可能性が示唆された。
関連論文リスト
- Audio Processing using Pattern Recognition for Music Genre Classification [0.0]
本研究は,GTZANデータセットを用いた音楽ジャンル分類における機械学習手法の適用について検討する。
パーソナライズされた音楽レコメンデーションの需要が高まる中、私たちは、ブルース、クラシック、ジャズ、ヒップホップ、カントリーという5つのジャンルの分類に注力しました。
ANNモデルは最高の性能を示し、検証精度は92.44%に達した。
論文 参考訳(メタデータ) (2024-10-19T05:44:05Z) - A Survey of Foundation Models for Music Understanding [60.83532699497597]
この研究は、AI技術と音楽理解の交差に関する初期のレビューの1つである。
音楽理解能力に関して,近年の大規模音楽基盤モデルについて検討,分析,検証を行った。
論文 参考訳(メタデータ) (2024-09-15T03:34:14Z) - Foundation Models for Music: A Survey [77.77088584651268]
ファンデーションモデル(FM)は音楽を含む様々な分野に大きな影響を与えている。
本総説では,音楽の事前学習モデルと基礎モデルについて概観する。
論文 参考訳(メタデータ) (2024-08-26T15:13:14Z) - MeLFusion: Synthesizing Music from Image and Language Cues using Diffusion Models [57.47799823804519]
私たちは、ミュージシャンが映画の脚本だけでなく、視覚化を通して音楽を作る方法にインスピレーションを受けています。
本稿では,テキスト記述と対応する画像からの手がかりを効果的に利用して音楽を合成するモデルであるMeLFusionを提案する。
音楽合成パイプラインに視覚情報を加えることで、生成した音楽の質が大幅に向上することを示す。
論文 参考訳(メタデータ) (2024-06-07T06:38:59Z) - MuPT: A Generative Symbolic Music Pretrained Transformer [56.09299510129221]
音楽の事前学習におけるLarge Language Models (LLM) の適用について検討する。
生成過程の異なるトラックからの不整合対策に関連する課題に対処するために,SMT-ABC Notation(Synchronized Multi-Track ABC Notation)を提案する。
私たちのコントリビューションには、最大8192個のトークンを処理可能な一連のモデルが含まれており、トレーニングセットの象徴的な音楽データの90%をカバーしています。
論文 参考訳(メタデータ) (2024-04-09T15:35:52Z) - Can MusicGen Create Training Data for MIR Tasks? [3.8980564330208662]
我々は,AIに基づく生成音楽システムを用いて音楽情報検索タスクの学習データを生成するという,より広範な概念について検討している。
我々は50000以上のジャンルを規定したテキスト記述を構築し、5つのジャンルをカバーした楽曲の抜粋を作成した。
予備的な結果は,提案モデルが実世界の音楽録音を一般化した人工音楽トラックからジャンル特有な特徴を学習できることを示唆している。
論文 参考訳(メタデータ) (2023-11-15T16:41:56Z) - An Autoethnographic Exploration of XAI in Algorithmic Composition [7.775986202112564]
本稿では,アイルランド音楽で学習した潜在次元の解釈可能な測度VeE生成音楽XAIモデルを用いた自己エスノグラフィー研究を紹介する。
音楽作成ワークフローの探索的性質は、生成モデル自体の特徴ではなく、トレーニングデータセットの音楽的特徴を前提としていることが示唆されている。
論文 参考訳(メタデータ) (2023-08-11T12:03:17Z) - From West to East: Who can understand the music of the others better? [91.78564268397139]
我々は、異なる音楽文化間の類似性についての洞察を導き出すために、伝達学習手法を活用する。
西洋音楽の2つのデータセット、地中海東部の文化に由来する伝統的・民族的な2つのデータセット、インドの芸術音楽に属する2つのデータセットを使用します。
CNNベースの2つのアーキテクチャとTransformerベースのアーキテクチャを含む3つのディープオーディオ埋め込みモデルがトレーニングされ、ドメイン間で転送される。
論文 参考訳(メタデータ) (2023-07-19T07:29:14Z) - Personalized Popular Music Generation Using Imitation and Structure [1.971709238332434]
そこで本研究では,特定の例のシード曲から構造,メロディ,和音,バススタイルを捉え,模倣できる統計的機械学習モデルを提案する。
10曲のポップソングによる評価は,我々の新しい表現と手法が高品質なスタイリスティック音楽を作り出すことができることを示している。
論文 参考訳(メタデータ) (2021-05-10T23:43:00Z) - Can GAN originate new electronic dance music genres? -- Generating novel
rhythm patterns using GAN with Genre Ambiguity Loss [0.0]
本稿では,音楽生成,特に電子舞踊音楽のリズムパターンに着目し,深層学習を用いて新しいリズムを生成できるかを論じる。
我々は、GAN(Generative Adversarial Networks)のフレームワークを拡張し、データセット固有の分布から分岐することを奨励する。
提案したGANは、音楽リズムのように聞こえるリズムパターンを生成できるが、トレーニングデータセットのどのジャンルにも属さないことを示す。
論文 参考訳(メタデータ) (2020-11-25T23:22:12Z) - Incorporating Music Knowledge in Continual Dataset Augmentation for
Music Generation [69.06413031969674]
Aug-Genは、リソース制約のあるドメインでトレーニングされた任意の音楽生成システムに対するデータセット拡張の方法である。
我々は、Aug-Gen をトランスフォーマーベースのコラール生成に J.S. Bach のスタイルで適用し、これによりより長いトレーニングが可能となり、より優れた生成出力が得られることを示す。
論文 参考訳(メタデータ) (2020-06-23T21:06:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。