Emergent quantum probability from full quantum dynamics and the role of
energy conservation
- URL: http://arxiv.org/abs/2306.00298v1
- Date: Thu, 1 Jun 2023 02:37:02 GMT
- Title: Emergent quantum probability from full quantum dynamics and the role of
energy conservation
- Authors: Chen Wang, Jincheng Lu, and Jianhua Jiang
- Abstract summary: We show that the Born's rule of quantum probability can emerge directly from microscopic quantum dynamics.
Surprisingly, in the infinite long time measurement limit, the energy conservation already dictates the emergence of the Born's rule of quantum probability.
- Score: 6.74689840972616
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose and study a toy model for the quantum measurements that yield the
Born's rule of quantum probability. In this model, the electrons interact with
local photon modes and the photon modes are dissipatively coupled with local
photon reservoirs. We treat the interactions of the electrons and photons with
full quantum mechanical description, while the dissipative dynamics of the
photon modes are treated via the Lindblad master equation. By assigning double
quantum dot setup for the electrons coupling with local photons and photonic
reservoirs, we show that the Born's rule of quantum probability can emerge
directly from microscopic quantum dynamics. We further discuss how the
microscopic quantities such as the electron-photon couplings, detuning, and
photon dissipation rate determine the quantum dynamics. Surprisingly, in the
infinite long time measurement limit, the energy conservation already dictates
the emergence of the Born's rule of quantum probability. For finite-time
measurement, the local photon dissipation rate determines the characteristic
time-scale for the completion of the measurement, while other microscopic
quantities affect the measurement dynamics. Therefore, in genuine measurements,
the measured probability is determined by both the local devices and the
quantum mechanical wavefunction.
Related papers
- Quantum trajectories and output field properties for two-photon input field [0.0]
We describe a quantum system interacting with a light prepared in a continuous-mode two-photon state.
The problem of a conditional evolution of the quantum system, depending on the results of the measurement of the output field, is formulated.
We show how to apply the quantum trajectories to obtain the formula for the probability of the two-photon absorption for a three-level atom in a ladder configuration.
arXiv Detail & Related papers (2024-09-11T17:18:38Z) - Non-classical excitation of a solid-state quantum emitter [0.0]
We show that a single photon is sufficient to change the state of a solid-state quantum emitter.
These results suggest future possibilities ranging from enabling quantum information transfer in a quantum network to building deterministic entangling gates for photonic quantum computing.
arXiv Detail & Related papers (2024-07-30T16:16:58Z) - A Theory of Quantum Jumps [44.99833362998488]
We study fluorescence and the phenomenon of quantum jumps'' in idealized models of atoms coupled to the quantized electromagnetic field.
Our results amount to a derivation of the fundamental randomness in the quantum-mechanical description of microscopic systems.
arXiv Detail & Related papers (2024-04-16T11:00:46Z) - Amplification of quantum transfer and quantum ratchet [56.47577824219207]
We study a model of amplification of quantum transfer and making it directed which we call the quantum ratchet model.
The ratchet effect is achieved in the quantum control model with dissipation and sink, where the Hamiltonian depends on vibrations in the energy difference synchronized with transitions between energy levels.
Amplitude and frequency of the oscillating vibron together with the dephasing rate are the parameters of the quantum ratchet which determine its efficiency.
arXiv Detail & Related papers (2023-12-31T14:04:43Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Schr\"odinger cat states of a 16-microgram mechanical oscillator [54.35850218188371]
The superposition principle is one of the most fundamental principles of quantum mechanics.
Here we demonstrate the preparation of a mechanical resonator with an effective mass of 16.2 micrograms in Schr"odinger cat states of motion.
We show control over the size and phase of the superposition and investigate the decoherence dynamics of these states.
arXiv Detail & Related papers (2022-11-01T13:29:44Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Photon counting probabilities of the output field for a single-photon
input [0.0]
We derive photon counting statistics for an output field of a single-photon wave packet interacting with a quantum system.
We determine the exclusive probability densities for the output field by making use of quantum filtering theory.
arXiv Detail & Related papers (2021-09-11T08:15:15Z) - Stochastic Variational Approach to Small Atoms and Molecules Coupled to
Quantum Field Modes [55.41644538483948]
We present a variational calculation (SVM) of energies and wave functions of few particle systems coupled to quantum fields in cavity QED.
Examples for a two-dimensional trion and confined electrons as well as for the He atom and the Hydrogen molecule are presented.
arXiv Detail & Related papers (2021-08-25T13:40:42Z) - Imprinting the quantum statistics of photons on free electrons [0.15274583259797847]
We observe quantum statistics effects of photons on free-electron-light interactions.
We demonstrate interactions passing continuously from Poissonian to super-Poissonian and up to thermal statistics.
Our findings suggest free-electron-based non-destructive quantum tomography of light, and constitute an important step towards combined atto-second and sub-A-spatial resolution microscopy.
arXiv Detail & Related papers (2021-05-07T08:16:21Z) - Shaping Quantum Photonic States Using Free Electrons [0.0]
We explore the shaping of photon statistics using the quantum interactions of free electrons with photons in optical cavities.
We find a variety of quantum states of light that can be generated by a judicious choice of the input light and electron states.
By exploiting the degrees of freedom of arbitrary electron-photon quantum states, we may achieve complete control over the statistics and correlations of output photonic states.
arXiv Detail & Related papers (2020-11-02T20:59:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.