Quantum trajectories and output field properties for two-photon input field
- URL: http://arxiv.org/abs/2409.07428v1
- Date: Wed, 11 Sep 2024 17:18:38 GMT
- Title: Quantum trajectories and output field properties for two-photon input field
- Authors: Anita Dabrowska, Gniewomir Sarbicki,
- Abstract summary: We describe a quantum system interacting with a light prepared in a continuous-mode two-photon state.
The problem of a conditional evolution of the quantum system, depending on the results of the measurement of the output field, is formulated.
We show how to apply the quantum trajectories to obtain the formula for the probability of the two-photon absorption for a three-level atom in a ladder configuration.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We describe a stochastic evolution of a quantum system interacting with a light prepared in a continuous-mode two-photon state. The problem of a conditional evolution of the quantum system, depending on the results of the measurement of the output field, is formulated and solved making use of the model of repeated interactions. We define the discrete in-time interaction between the quantum system and its environment being the electromagnetic field approximated by a chain of harmonic oscillators. We determine analytical formulae for quantum trajectories associated with one-dimensional and two-dimensional counting processes, corresponding respectively to unidirectional or bidirectional input field prepared in the two-photon state. Moreover, we determine the formulae for the exclusive probability densities of photon counts that allow us to completely characterize the photon statistics of the output field. Finally, we show how to apply the quantum trajectories to obtain the formula for the probability of the two-photon absorption for a three-level atom in a ladder configuration. The paper also includes a discussion on the optimal two-photon state that maximizes the two-photon absorption probability.
Related papers
- Non-classical excitation of a solid-state quantum emitter [0.0]
We show that a single photon is sufficient to change the state of a solid-state quantum emitter.
These results suggest future possibilities ranging from enabling quantum information transfer in a quantum network to building deterministic entangling gates for photonic quantum computing.
arXiv Detail & Related papers (2024-07-30T16:16:58Z) - Deterministic generation of multi-photon bundles in a quantum Rabi model [7.475750944627122]
We propose a scheme that generates multi-photon bundles via virtual excitations in a quantum Rabi model.
We show that the driving pulses induce deterministic emission of multiple photons from the eigenstates of the quantum Rabi model.
We calculate the generalized second-order correlation functions of the output photons, which reveal that the emitted photons form antibunched multi-photon bundles.
arXiv Detail & Related papers (2022-10-07T15:21:33Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Interaction of quantum systems with single pulses of quantized radiation [68.8204255655161]
We describe the interaction of a propagating pulse of quantum radiation with a localized quantum system.
By transformation to an appropriate picture, we identify the usual Jaynes-Cummings Hamiltonian between the scatterer and a superposition of the initial and final mode.
The transformed master equation offers important insights into the system dynamics and it permits numerically efficient solutions.
arXiv Detail & Related papers (2022-03-14T20:23:23Z) - Modeling of Multimodal Scattering by Conducting Bodies in Quantum
Optics: the Method of Characteristic Modes [0.0]
We give the quantum adaptation of the characteristic mode approach widely used in the classical electrodynamics.
We show how scattering affects quantum-statistical features of the field.
We expect that this method will be useful for designing quantum-optical devices.
arXiv Detail & Related papers (2021-12-17T14:25:59Z) - Photon counting probabilities of the output field for a single-photon
input [0.0]
We derive photon counting statistics for an output field of a single-photon wave packet interacting with a quantum system.
We determine the exclusive probability densities for the output field by making use of quantum filtering theory.
arXiv Detail & Related papers (2021-09-11T08:15:15Z) - Stochastic Variational Approach to Small Atoms and Molecules Coupled to
Quantum Field Modes [55.41644538483948]
We present a variational calculation (SVM) of energies and wave functions of few particle systems coupled to quantum fields in cavity QED.
Examples for a two-dimensional trion and confined electrons as well as for the He atom and the Hydrogen molecule are presented.
arXiv Detail & Related papers (2021-08-25T13:40:42Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.