論文の概要: Using Genetic Programming to Build Self-Adaptivity into Software-Defined
Networks
- arxiv url: http://arxiv.org/abs/2306.00316v2
- Date: Tue, 15 Aug 2023 15:38:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-24 04:57:41.547149
- Title: Using Genetic Programming to Build Self-Adaptivity into Software-Defined
Networks
- Title(参考訳): 遺伝的プログラミングを使ってソフトウェア定義ネットワークに自己適応性を構築する
- Authors: Jia Li, Shiva Nejati, Mehrdad Sabetzadeh
- Abstract要約: 自己適応ソリューションは、定期的に監視し、推論し、実行中のシステムに適応する必要があります。
本稿では,ソフトウェア定義ネットワークのデータフォワード論理における制御構造を継続的に学習し,更新する自己適応手法を提案する。
- 参考スコア(独自算出の注目度): 21.081978372435184
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Self-adaptation solutions need to periodically monitor, reason about, and
adapt a running system. The adaptation step involves generating an adaptation
strategy and applying it to the running system whenever an anomaly arises. In
this article, we argue that, rather than generating individual adaptation
strategies, the goal should be to adapt the control logic of the running system
in such a way that the system itself would learn how to steer clear of future
anomalies, without triggering self-adaptation too frequently. While the need
for adaptation is never eliminated, especially noting the uncertain and
evolving environment of complex systems, reducing the frequency of adaptation
interventions is advantageous for various reasons, e.g., to increase
performance and to make a running system more robust. We instantiate and
empirically examine the above idea for software-defined networking -- a key
enabling technology for modern data centres and Internet of Things
applications. Using genetic programming,(GP), we propose a self-adaptation
solution that continuously learns and updates the control constructs in the
data-forwarding logic of a software-defined network. Our evaluation, performed
using open-source synthetic and industrial data, indicates that, compared to a
baseline adaptation technique that attempts to generate individual adaptations,
our GP-based approach is more effective in resolving network congestion, and
further, reduces the frequency of adaptation interventions over time. In
addition, we show that, for networks with the same topology, reusing over
larger networks the knowledge that is learned on smaller networks leads to
significant improvements in the performance of our GP-based adaptation
approach. Finally, we compare our approach against a standard data-forwarding
algorithm from the network literature, demonstrating that our approach
significantly reduces packet loss.
- Abstract(参考訳): 自己適応ソリューションは、定期的にシステムを監視し、推論し、適応する必要があります。
適応ステップは、適応戦略を生成し、異常が発生したときにランニングシステムに適用する。
本稿では,個別の適応戦略を生成するのではなく,システム自体が,自己適応を頻繁に引き起こすことなく,将来の異常を解消する方法を学ぶように,実行中のシステムの制御ロジックを適応させることを目標とすべきである,と論じる。
適応の必要性は決して排除されないが、特に複雑なシステムの不確実で進化した環境に注目すると、適応介入の頻度を減少させることは、パフォーマンスの向上や実行システムの堅牢性向上など、さまざまな理由から有利である。
最新のデータセンタとモノのインターネットアプリケーションのための重要な技術である、ソフトウェア定義ネットワークに関する上記のアイデアを、インスタンス化し、実証的に検証します。
遺伝的プログラミング(gp)を用いて,ソフトウェア定義ネットワークのデータフォワード論理における制御構成を継続的に学習し,更新する自己適応ソリューションを提案する。
本評価は, オープンソースの合成および産業データを用いて実施し, 個別適応を生成するベースライン適応手法と比較して, gpベースアプローチがネットワーク混雑の解消に有効であること, また, 時間とともに適応介入の頻度を減少させることを示す。
さらに,同じトポロジを持つネットワークでは,大規模ネットワーク上での再利用によって,より小さなネットワークで学習される知識がgpベースの適応手法の性能を大幅に向上させることを示した。
最後に,ネットワーク文献からの標準データフォワードアルゴリズムに対するアプローチを比較し,パケットロスを大幅に低減することを示す。
関連論文リスト
- Brain-Inspired Online Adaptation for Remote Sensing with Spiking Neural Network [17.315710646752176]
本研究では、リモートセンシングのためのスパイキングニューラルネットワーク(SNN)に基づくオンライン適応フレームワークを提案する。
我々の知る限り、この研究はSNNのオンライン適応に最初に取り組むものである。
提案手法は、エッジデバイス上でのエネルギー効率と高速なオンライン適応を実現するとともに、軌道上の衛星やUAVにおけるリモートセンシングなどの応用に大きな可能性を秘めている。
論文 参考訳(メタデータ) (2024-09-03T08:47:53Z) - Decentralized Learning Strategies for Estimation Error Minimization with Graph Neural Networks [94.2860766709971]
統計的に同一性を持つ無線ネットワークにおける自己回帰的マルコフ過程のサンプリングとリモート推定の課題に対処する。
我々のゴールは、分散化されたスケーラブルサンプリングおよび送信ポリシーを用いて、時間平均推定誤差と/または情報の年齢を最小化することである。
論文 参考訳(メタデータ) (2024-04-04T06:24:11Z) - CODA: A COst-efficient Test-time Domain Adaptation Mechanism for HAR [25.606795179822885]
モバイルセンシングのためのCOst- efficient Domain Adaptation 機構であるCODAを提案する。
CODAは、データ分散の観点からのリアルタイムドリフトにアクティブラーニング理論を用いて対処する。
我々はCODAによるオンライン適応の可能性と可能性を実証する。
論文 参考訳(メタデータ) (2024-03-22T02:50:42Z) - Low Complexity Adaptive Machine Learning Approaches for End-to-End
Latency Prediction [0.0]
この研究は、予測、監視、予測のための効率的で低コストな適応アルゴリズムの設計である。
我々は,GNNにおける近年の国際的課題の後に提供されたパブリックジェネレータから得られるデータに対して,我々のアプローチと結果を説明するために,エンドツーエンドの遅延予測に焦点を当てた。
論文 参考訳(メタデータ) (2023-01-31T10:29:11Z) - Offline Contextual Bandits for Wireless Network Optimization [107.24086150482843]
本稿では,ユーザ要求の変化に応じて,ネットワーク内の各セルの構成パラメータを自動的に調整するポリシの学習方法について検討する。
私たちのソリューションは、オフライン学習のための既存の方法を組み合わせて、この文脈で生じる重要な課題を克服する原則的な方法でそれらを適応します。
論文 参考訳(メタデータ) (2021-11-11T11:31:20Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Better than the Best: Gradient-based Improper Reinforcement Learning for
Network Scheduling [60.48359567964899]
パケット遅延を最小限に抑えるため,制約付き待ち行列ネットワークにおけるスケジューリングの問題を考える。
我々は、利用可能な原子ポリシーよりも優れたスケジューラを生成するポリシー勾配に基づく強化学習アルゴリズムを使用する。
論文 参考訳(メタデータ) (2021-05-01T10:18:34Z) - Continual Adaptation for Deep Stereo [52.181067640300014]
本稿では,難易度と変化の激しい環境に対処するために,深層ステレオネットワークの継続的適応パラダイムを提案する。
我々のパラダイムでは、オンラインモデルに継続的に適応するために必要な学習信号は、右から左への画像ワープや従来のステレオアルゴリズムによって自己監督から得られる。
我々のネットワークアーキテクチャと適応アルゴリズムは、初めてのリアルタイム自己適応型ディープステレオシステムを実現する。
論文 参考訳(メタデータ) (2020-07-10T08:15:58Z) - DANR: Discrepancy-aware Network Regularization [15.239252118069762]
ネットワーク正規化は、ネットワーク上のコヒーレントモデルを学習するための効果的なツールである。
本稿では,正規化が不十分で,時間的ネットワーク上でのモデル進化と構造変化を効果的に捉える新しい手法を提案する。
本研究では,乗算器の交互化法(ADMM)に基づくスケーラブルでスケーラブルなアルゴリズムを開発し,大域的最適解への収束を保証する。
論文 参考訳(メタデータ) (2020-05-31T02:01:19Z) - Logarithmic Regret Bound in Partially Observable Linear Dynamical
Systems [91.43582419264763]
部分的に観測可能な線形力学系におけるシステム同定と適応制御の問題について検討する。
開ループ系と閉ループ系の両方において有限時間保証付きの最初のモデル推定法を提案する。
AdaptOnは、未知の部分観測可能な線形力学系の適応制御において、$textpolylogleft(Tright)$ regretを達成する最初のアルゴリズムであることを示す。
論文 参考訳(メタデータ) (2020-03-25T06:00:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。