論文の概要: Example-based Motion Synthesis via Generative Motion Matching
- arxiv url: http://arxiv.org/abs/2306.00378v1
- Date: Thu, 1 Jun 2023 06:19:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-02 18:01:50.281234
- Title: Example-based Motion Synthesis via Generative Motion Matching
- Title(参考訳): 生成運動マッチングによる事例ベースモーション合成
- Authors: Weiyu Li, Xuelin Chen, Peizhuo Li, Olga Sorkine-Hornung, Baoquan Chen
- Abstract要約: 我々は、単一または少数のサンプルシーケンスから可能な限り多くの多様な動きを「マイニング」する生成モデルGenMMを提案する。
GenMMは、トレーニングのない性質と、よく知られたMotion Matching法の優れた品質を継承する。
- 参考スコア(独自算出の注目度): 44.20519633463265
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present GenMM, a generative model that "mines" as many diverse motions as
possible from a single or few example sequences. In stark contrast to existing
data-driven methods, which typically require long offline training time, are
prone to visual artifacts, and tend to fail on large and complex skeletons,
GenMM inherits the training-free nature and the superior quality of the
well-known Motion Matching method. GenMM can synthesize a high-quality motion
within a fraction of a second, even with highly complex and large skeletal
structures. At the heart of our generative framework lies the generative motion
matching module, which utilizes the bidirectional visual similarity as a
generative cost function to motion matching, and operates in a multi-stage
framework to progressively refine a random guess using exemplar motion matches.
In addition to diverse motion generation, we show the versatility of our
generative framework by extending it to a number of scenarios that are not
possible with motion matching alone, including motion completion, key
frame-guided generation, infinite looping, and motion reassembly. Code and data
for this paper are at https://wyysf-98.github.io/GenMM/
- Abstract(参考訳): 我々は、単一または少数のサンプルシーケンスから可能な限り多くの多様な動きを「マイニング」する生成モデルGenMMを提案する。
通常長時間のオフライントレーニングを必要とする既存のデータ駆動手法とは対照的に、視覚的なアーティファクトは少なく、大型で複雑な骨格では失敗する傾向があるため、GenMMはトレーニングのない性質と、よく知られたモーションマッチング手法の優れた品質を継承する。
GenMMは、非常に複雑で大きな骨格構造であっても、1秒以内に高品質な運動を合成することができる。
生成フレームワークの中心には、生成的動きマッチングモジュールがあり、このモジュールは、双方向の視覚的類似性を生成的コスト関数として利用し、多段階のフレームワークで動作マッチングを用いてランダムな推測を段階的に洗練する。
多様な動作生成に加えて,動作完了,キーフレーム誘導生成,無限ループ,動き再組み立てなど,動作マッチングだけでは不可能となるシナリオを数多く拡張することにより,生成フレームワークの汎用性を示す。
コードとデータはhttps://wyysf-98.github.io/genmm/にある。
関連論文リスト
- MotionCraft: Crafting Whole-Body Motion with Plug-and-Play Multimodal Controls [30.487510829107908]
プラグ・アンド・プレイ・マルチモーダル制御による全身動作を実現する統合拡散変換器であるMotionCraftを提案する。
我々のフレームワークは、テキスト・ツー・モーション・セマンティック・トレーニングの第1段階から始まる粗大な訓練戦略を採用している。
本稿では,SMPL-Xフォーマットを統一したマルチモーダル全体モーション生成ベンチマークMC-Benchを紹介する。
論文 参考訳(メタデータ) (2024-07-30T18:57:06Z) - Large Motion Model for Unified Multi-Modal Motion Generation [50.56268006354396]
Large Motion Model (LMM) は、動き中心のマルチモーダルフレームワークであり、メインストリームのモーション生成タスクをジェネラリストモデルに統合する。
LMMは3つの原則的な側面からこれらの課題に取り組む。
論文 参考訳(メタデータ) (2024-04-01T17:55:11Z) - FineMoGen: Fine-Grained Spatio-Temporal Motion Generation and Editing [56.29102849106382]
FineMoGenは拡散ベースのモーション生成および編集フレームワークである。
微細な動きを合成し、ユーザの指示に時空間の合成を施す。
FineMoGenはさらに、現代の大規模言語モデルの助けを借りて、ゼロショットモーション編集機能を可能にする。
論文 参考訳(メタデータ) (2023-12-22T16:56:02Z) - Hierarchical Generation of Human-Object Interactions with Diffusion
Probabilistic Models [71.64318025625833]
本稿では,対象物と相互作用する人間の3次元運動を生成するための新しいアプローチを提案する。
私たちのフレームワークはまず一連のマイルストーンを生成し、それに沿って動きを合成します。
NSM, COUCH, SAMPデータセットを用いた実験では, 従来の手法よりも品質と多様性に大きな差があることが示されている。
論文 参考訳(メタデータ) (2023-10-03T17:50:23Z) - MoDi: Unconditional Motion Synthesis from Diverse Data [51.676055380546494]
多様な動きを合成する無条件生成モデルであるMoDiを提案する。
我々のモデルは、多様な、構造化されていない、ラベルなしのモーションデータセットから完全に教師なしの設定で訓練されている。
データセットに構造が欠けているにもかかわらず、潜在空間は意味的にクラスタ化可能であることを示す。
論文 参考訳(メタデータ) (2022-06-16T09:06:25Z) - GANimator: Neural Motion Synthesis from a Single Sequence [38.361579401046875]
本稿では,1つの短い動き列から新しい動きを合成することを学ぶ生成モデルであるGANimatorを提案する。
GANimatorはオリジナルの動きのコア要素に類似した動きを生成し、同時に新規で多様な動きを合成する。
クラウドシミュレーション,キーフレーム編集,スタイル転送,対話型制御など,さまざまな応用例を示し,それぞれが単一の入力シーケンスから学習する。
論文 参考訳(メタデータ) (2022-05-05T13:04:14Z) - MUGL: Large Scale Multi Person Conditional Action Generation with
Locomotion [9.30315673109153]
MUGLは、大規模で多様な1対複数対多のポーズベースのアクションシーケンスをロコモーションで生成するための、新しいディープニューラルネットワークモデルである。
我々の制御可能なアプローチは、100以上のカテゴリで、アクションカテゴリによってカスタマイズ可能な可変長世代を可能にする。
論文 参考訳(メタデータ) (2021-10-21T20:11:53Z) - Hierarchical Style-based Networks for Motion Synthesis [150.226137503563]
本研究では,特定の目標地点を達成するために,長距離・多種多様・多様な行動を生成する自己指導手法を提案する。
提案手法は,長距離生成タスクを階層的に分解することで人間の動作をモデル化する。
大規模な骨格データから, 提案手法は長距離, 多様な, もっともらしい動きを合成できることを示す。
論文 参考訳(メタデータ) (2020-08-24T02:11:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。