Interpretable simultaneous localization of MRI corpus callosum and
classification of atypical Parkinsonian disorders using YOLOv5
- URL: http://arxiv.org/abs/2306.00473v1
- Date: Thu, 1 Jun 2023 09:23:22 GMT
- Title: Interpretable simultaneous localization of MRI corpus callosum and
classification of atypical Parkinsonian disorders using YOLOv5
- Authors: Vamshi Krishna Kancharla, Debanjali Bhattacharya, Neelam Sinha,
Jitender Saini, Pramod Kumar Pal, Sandhya M
- Abstract summary: The corpus callosum (CC) is the principal white matter fibre tract, enabling inter-hemispheric communication.
The present work proposes the potential of YOLOv5-based CC detection framework to differentiate atypical Parkinsonian disorders (PD) from healthy controls (HC)
- Score: 0.9236074230806579
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Structural MRI(S-MRI) is one of the most versatile imaging modality that
revolutionized the anatomical study of brain in past decades. The corpus
callosum (CC) is the principal white matter fibre tract, enabling all kinds of
inter-hemispheric communication. Thus, subtle changes in CC might be associated
with various neurological disorders. The present work proposes the potential of
YOLOv5-based CC detection framework to differentiate atypical Parkinsonian
disorders (PD) from healthy controls (HC). With 3 rounds of hold-out
validation, mean classification accuracy of 92% is obtained using the proposed
method on a proprietary dataset consisting of 20 healthy subjects and 20 cases
of APDs, with an improvement of 5% over SOTA methods (CC morphometry and visual
texture analysis) that used the same dataset. Subsequently, in order to
incorporate the explainability of YOLO predictions, Eigen CAM based heatmap is
generated for identifying the most important sub-region in CC that leads to the
classification. The result of Eigen CAM showed CC mid-body as the most
distinguishable sub-region in classifying APDs and HC, which is in-line with
SOTA methodologies and the current prevalent understanding in medicine.
Related papers
- Graph Classification and Radiomics Signature for Identification of Tuberculous Meningitis [2.2301876577897968]
Tuberculous meningitis (TBM) is a serious brain infection caused by Mycobacterium tuberculosis.
This study aims to classify TBM patients using T1-weighted (T1w) non-contrast Magnetic Resonance Imaging (MRI) scans.
arXiv Detail & Related papers (2025-04-01T16:28:39Z) - Multi-Class Segmentation of Aortic Branches and Zones in Computed Tomography Angiography: The AortaSeg24 Challenge [55.252714550918824]
AortaSeg24 MICCAI Challenge introduced the first dataset of 100 CTA volumes annotated for 23 clinically relevant aortic branches and zones.
This paper presents the challenge design, dataset details, evaluation metrics, and an in-depth analysis of the top-performing algorithms.
arXiv Detail & Related papers (2025-02-07T21:09:05Z) - Preserving Cardiac Integrity: A Topology-Infused Approach to Whole Heart Segmentation [6.495726693226574]
Whole heart segmentation (WHS) supports cardiovascular disease diagnosis, disease monitoring, treatment planning, and prognosis.
This paper introduces a new topology-preserving module that is integrated into deep neural networks.
The implementation achieves anatomically plausible segmentation by using learned topology-preserving fields, which are based entirely on 3D convolution and are therefore very effective for 3D voxel data.
arXiv Detail & Related papers (2024-10-14T14:32:05Z) - Leveraging Persistent Homology for Differential Diagnosis of Mild Cognitive Impairment [2.474908349649168]
Mild cognitive impairment (MCI) is characterized by subtle changes in cognitive functions, often associated with disruptions in brain connectivity.
The present study introduces a novel fine-grained analysis to examine topological alterations in neurodegeneration pertaining to six different brain networks of subjects.
arXiv Detail & Related papers (2024-08-28T09:01:55Z) - An interpretable generative multimodal neuroimaging-genomics framework for decoding Alzheimer's disease [13.213387075528017]
Alzheimer's disease (AD) is the most prevalent form of dementia worldwide, encompassing a prodromal stage known as Mild Cognitive Impairment (MCI)
The objective of the work was to capture structural and functional modulations of brain structure and function relying on multimodal MRI data and Single Nucleotide Polymorphisms.
arXiv Detail & Related papers (2024-06-19T07:31:47Z) - An Interpretable Cross-Attentive Multi-modal MRI Fusion Framework for Schizophrenia Diagnosis [46.58592655409785]
We propose a novel Cross-Attentive Multi-modal Fusion framework (CAMF) to capture both intra-modal and inter-modal relationships between fMRI and sMRI.
Our approach significantly improves classification accuracy, as demonstrated by our evaluations on two extensive multi-modal brain imaging datasets.
The gradient-guided Score-CAM is applied to interpret critical functional networks and brain regions involved in schizophrenia.
arXiv Detail & Related papers (2024-03-29T20:32:30Z) - CIMIL-CRC: a clinically-informed multiple instance learning framework for patient-level colorectal cancer molecular subtypes classification from H\&E stained images [42.771819949806655]
We introduce CIMIL-CRC', a framework that solves the MSI/MSS MIL problem by efficiently combining a pre-trained feature extraction model with principal component analysis (PCA) to aggregate information from all patches.
We assessed our CIMIL-CRC method using the average area under the curve (AUC) from a 5-fold cross-validation experimental setup for model development on the TCGA-CRC-DX cohort.
arXiv Detail & Related papers (2024-01-29T12:56:11Z) - Brain Imaging-to-Graph Generation using Adversarial Hierarchical Diffusion Models for MCI Causality Analysis [44.45598796591008]
Brain imaging-to-graph generation (BIGG) framework is proposed to map functional magnetic resonance imaging (fMRI) into effective connectivity for mild cognitive impairment analysis.
The hierarchical transformers in the generator are designed to estimate the noise at multiple scales.
Evaluations of the ADNI dataset demonstrate the feasibility and efficacy of the proposed model.
arXiv Detail & Related papers (2023-05-18T06:54:56Z) - Early Disease Stage Characterization in Parkinson's Disease from
Resting-state fMRI Data Using a Long Short-term Memory Network [6.487961959149217]
Parkinson's disease (PD) is a common and complex neurodegenerative disorder with 5 stages in the Hoehn and Yahr scaling.
It is challenging to classify early stages 1 and 2 and detect brain function alterations.
We propose the use of a long short-term memory (LSTM) network to characterize the early stages of PD.
arXiv Detail & Related papers (2022-02-11T18:34:11Z) - Deep Joint Learning of Pathological Region Localization and Alzheimer's
Disease Diagnosis [4.5484714814315685]
BrainBagNet is a framework for jointly learning pathological region localization and Alzheimer's disease diagnosis.
The proposed method represents the patch-level response from whole-brain MRI scans and discriminative brain-region from position information.
In five-fold cross-validation, the classification performance of the proposed method outperformed that of the state-of-the-art methods in both AD diagnosis and mild cognitive impairment prediction tasks.
arXiv Detail & Related papers (2021-08-10T10:06:54Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - MAGIC: Multi-scale Heterogeneity Analysis and Clustering for Brain
Diseases [3.955454029331185]
We introduce a novel method, MAGIC, to uncover disease heterogeneity by leveraging multi-scale clustering.
We validate MAGIC using simulated heterogeneous neuroanatomical data and demonstrate its clinical potential by exploring the heterogeneity of Alzheimers Disease (AD)
Our results indicate two main subtypes of AD with distinct atrophy patterns that consist of both fine-scale atrophy in the hippocampus as well as large-scale atrophy in cortical regions.
arXiv Detail & Related papers (2020-07-01T23:42:37Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
We present a novel segmentation strategy, co-heterogenous and adaptive segmentation (CHASe)
We propose a versatile framework that fuses appearance based semi-supervision, mask based adversarial domain adaptation, and pseudo-labeling.
CHASe can further improve pathological liver mask Dice-Sorensen coefficients by ranges of $4.2% sim 9.4%$.
arXiv Detail & Related papers (2020-05-27T06:58:39Z) - Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent
Multi-View Representation Learning [48.05232274463484]
Recently, the outbreak of Coronavirus Disease 2019 (COVID-19) has spread rapidly across the world.
Due to the large number of affected patients and heavy labor for doctors, computer-aided diagnosis with machine learning algorithm is urgently needed.
In this study, we propose to conduct the diagnosis of COVID-19 with a series of features extracted from CT images.
arXiv Detail & Related papers (2020-05-06T15:19:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.