論文の概要: Hinge-Wasserstein: Mitigating Overconfidence in Regression by
Classification
- arxiv url: http://arxiv.org/abs/2306.00560v1
- Date: Thu, 1 Jun 2023 11:20:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-02 16:43:47.999989
- Title: Hinge-Wasserstein: Mitigating Overconfidence in Regression by
Classification
- Title(参考訳): Hinge-Wasserstein: 回帰における過信を分類によって緩和する
- Authors: Ziliang Xiong, Abdelrahman Eldesokey, Joakim Johnander, Bastian Wandt,
Per-Erik Forssen
- Abstract要約: We propose a loss function, hinge-Wasserstein, based on the Wasserstein Distance。
両タイプの不確実性を制御した合成データセットにおいて,新たな損失の可能性を実証する。
実世界のシナリオの実証として,WildのHorizon Linesというベンチマークデータセットを用いて,我々のアプローチを評価した。
- 参考スコア(独自算出の注目度): 7.21242668459524
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern deep neural networks are prone to being overconfident despite their
drastically improved performance. In ambiguous or even unpredictable real-world
scenarios, this overconfidence can pose a major risk to the safety of
applications. For regression tasks, the regression-by-classification approach
has the potential to alleviate these ambiguities by instead predicting a
discrete probability density over the desired output. However, a density
estimator still tends to be overconfident when trained with the common NLL
loss. To mitigate the overconfidence problem, we propose a loss function,
hinge-Wasserstein, based on the Wasserstein Distance. This loss significantly
improves the quality of both aleatoric and epistemic uncertainty, compared to
previous work. We demonstrate the capabilities of the new loss on a synthetic
dataset, where both types of uncertainty are controlled separately. Moreover,
as a demonstration for real-world scenarios, we evaluate our approach on the
benchmark dataset Horizon Lines in the Wild. On this benchmark, using the
hinge-Wasserstein loss reduces the Area Under Sparsification Error (AUSE) for
horizon parameters slope and offset, by 30.47% and 65.00%, respectively.
- Abstract(参考訳): 現代のディープニューラルネットワークは、性能が大幅に向上したにもかかわらず、過信される傾向にある。
曖昧で予測不能な現実のシナリオでは、この過信がアプリケーションの安全性に大きなリスクをもたらす可能性がある。
回帰タスクでは、回帰分類アプローチはこれらの曖昧さを緩和し、代わりに所望の出力に対する離散的確率密度を予測する。
しかしながら、密度推定器は一般的なNLL損失で訓練された場合、依然として過信される傾向にある。
過信頼問題を緩和するために,wasserstein距離に基づく損失関数hind-wassersteinを提案する。
この損失は、前回の作業と比較して、アレテータ性および認識論的不確実性の両方の品質を大幅に向上させる。
両タイプの不確実性が別々に制御される合成データセット上で,新たな損失の能力を示す。
さらに,実世界のシナリオのデモンストレーションとして,本手法を実世界のベンチマークデータセットの水平線上で評価する。
このベンチマークでは、ヒンジ-wasserstein損失により、地平線パラメータの傾斜とオフセットのスパーシフィケーション誤差(ause)の領域をそれぞれ30.47%、65.00%減少させる。
関連論文リスト
- Uncertainty Quantification via Hölder Divergence for Multi-View Representation Learning [18.419742575630217]
本稿では,H"older Divergence (HD)に基づく新しいアルゴリズムを導入し,多視点学習の信頼性を高める。
デンプスター・シェーファー理論を通じて、異なるモダリティからの不確実性の統合により、包括的な結果が生成される。
数学的には、HDは実際のデータ分布とモデルの予測分布の間の距離'をよりよく測定できることを証明している。
論文 参考訳(メタデータ) (2024-10-29T04:29:44Z) - Probabilistic Contrastive Learning for Long-Tailed Visual Recognition [78.70453964041718]
細長い分布は、少数の少数派が限られた数のサンプルを含む実世界のデータにしばしば現れる。
近年の研究では、教師付きコントラスト学習がデータ不均衡を緩和する有望な可能性を示していることが明らかになっている。
本稿では,特徴空間の各クラスからのサンプルデータ分布を推定する確率論的コントラスト学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-03-11T13:44:49Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
本稿では,データあいまいさの予測不確実性を推定するためのポストホックサンプリング手法を提案する。
この方法は与えられた入力に対して異なる可算出力を生成することができ、予測分布のパラメトリック形式を仮定しない。
論文 参考訳(メタデータ) (2023-08-03T12:43:21Z) - Deep Anti-Regularized Ensembles provide reliable out-of-distribution
uncertainty quantification [4.750521042508541]
深層アンサンブルは、しばしばトレーニングドメインの外で過度に信頼された見積を返す。
トレーニングデータに適合する大きな重みを持つネットワークの集合は、これらの2つの目的を満たす可能性が高いことを示す。
提案手法の理論的枠組みを導出し,提案手法を「水充填問題」とみなすことができることを示す。
論文 参考訳(メタデータ) (2023-04-08T15:25:12Z) - How Reliable is Your Regression Model's Uncertainty Under Real-World
Distribution Shifts? [46.05502630457458]
本研究では,異なるタイプの分散シフトを伴う8つの画像ベース回帰データセットのベンチマークを提案する。
分散シフトがない場合、メソッドは十分に校正されているが、ベンチマークデータセットの多くに非常に自信が持たれていることが分かっています。
論文 参考訳(メタデータ) (2023-02-07T18:54:39Z) - Modeling Multimodal Aleatoric Uncertainty in Segmentation with Mixture
of Stochastic Expert [24.216869988183092]
入力画像にあいまいさが存在する場合、セグメンテーションにおけるデータ独立不確実性(いわゆるアレタリック不確実性)を捉えることに重点を置いている。
本稿では,各専門家ネットワークがアレータティック不確実性の異なるモードを推定する,新しい専門家モデル(MoSE)を提案する。
We developed a Wasserstein-like loss that makes direct minimizes the distribution distance between the MoSE and ground truth annotations。
論文 参考訳(メタデータ) (2022-12-14T16:48:21Z) - Uncertainty Modeling for Out-of-Distribution Generalization [56.957731893992495]
特徴統計を適切に操作することで、ディープラーニングモデルの一般化能力を向上させることができると論じる。
一般的な手法では、特徴統計を学習した特徴から測定された決定論的値とみなすことが多い。
我々は、学習中に合成された特徴統計を用いて、領域シフトの不確かさをモデル化することにより、ネットワークの一般化能力を向上させる。
論文 参考訳(メタデータ) (2022-02-08T16:09:12Z) - The Hidden Uncertainty in a Neural Networks Activations [105.4223982696279]
ニューラルネットワークの潜在表現の分布は、アウト・オブ・ディストリビューション(OOD)データの検出に成功している。
本研究は、この分布が、モデルの不確実性と相関しているかどうかを考察し、新しい入力に一般化する能力を示す。
論文 参考訳(メタデータ) (2020-12-05T17:30:35Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
本稿では,予測の多様性を奨励することで,ニューラルネットワークの効果的なアンサンブルを生成する問題をターゲットにする。
そこで本研究では,潜伏変数の学習における逆損失の多様性を明示的に最適化し,マルチモーダルデータのモデリングに必要な出力予測の多様性を得る。
最も競争力のあるベースラインと比較して、データ分布の変化の下で、分類精度が大幅に向上した。
論文 参考訳(メタデータ) (2020-03-10T03:10:41Z) - When Relation Networks meet GANs: Relation GANs with Triplet Loss [110.7572918636599]
GAN(Generative Adversarial Network)の学習安定性はいまだに悩みの種である
本稿では,判別器のための関係ネットワークアーキテクチャについて検討し,より優れた一般化と安定性を実現する三重項損失を設計する。
ベンチマークデータセットの実験により、提案された関係判別器と新たな損失は、可変視覚タスクに大幅な改善をもたらすことが示された。
論文 参考訳(メタデータ) (2020-02-24T11:35:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。