論文の概要: Fully Heteroscedastic Count Regression with Deep Double Poisson Networks
- arxiv url: http://arxiv.org/abs/2406.09262v4
- Date: Wed, 28 May 2025 17:30:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-29 17:35:49.987543
- Title: Fully Heteroscedastic Count Regression with Deep Double Poisson Networks
- Title(参考訳): ディープダブルポアソンネットワークを用いた完全難治性カウント回帰
- Authors: Spencer Young, Porter Jenkins, Longchao Da, Jeff Dotson, Hua Wei,
- Abstract要約: Deep Double Poisson Network (DDPN) はニューラル・離散カウント回帰モデルである。
DDPNはヘテロセダスティックガウスモデルと同様の頑健な回帰特性を示す。
多様なデータセットの実験では、DDPNが現在のベースラインを精度、キャリブレーション、アウト・オブ・ディストリビューション検出で上回っていることが示されている。
- 参考スコア(独自算出の注目度): 4.58556584533865
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural networks capable of accurate, input-conditional uncertainty representation are essential for real-world AI systems. Deep ensembles of Gaussian networks have proven highly effective for continuous regression due to their ability to flexibly represent aleatoric uncertainty via unrestricted heteroscedastic variance, which in turn enables accurate epistemic uncertainty estimation. However, no analogous approach exists for count regression, despite many important applications. To address this gap, we propose the Deep Double Poisson Network (DDPN), a novel neural discrete count regression model that outputs the parameters of the Double Poisson distribution, enabling arbitrarily high or low predictive aleatoric uncertainty for count data and improving epistemic uncertainty estimation when ensembled. We formalize and prove that DDPN exhibits robust regression properties similar to heteroscedastic Gaussian models via learnable loss attenuation, and introduce a simple loss modification to control this behavior. Experiments on diverse datasets demonstrate that DDPN outperforms current baselines in accuracy, calibration, and out-of-distribution detection, establishing a new state-of-the-art in deep count regression.
- Abstract(参考訳): 実世界のAIシステムには、正確な入力条件の不確実性表現が可能なニューラルネットワークが不可欠である。
ガウスネットワークのディープアンサンブルは、非制限ヘテロセダスティックな分散によってアレター的不確実性を柔軟に表現する能力により、継続的な回帰に対して非常に有効であることが証明されており、それによって正確な疫学的不確実性推定が可能である。
しかし、多くの重要な応用があるにもかかわらず、カウント回帰には類似したアプローチは存在しない。
このギャップに対処するために、DDPN(Deep Double Poisson Network)を提案する。これは、Double Poisson分布のパラメータを出力し、カウントデータに対する任意に高いまたは低い予測的アレタリック不確実性を可能とし、アンサンブル時の疫学的不確実性推定を改善する、新しい神経離散カウント回帰モデルである。
我々は、DDPNが学習可能な損失減衰により、ヘテロセダスティックガウスモデルに類似した頑健な回帰特性を示すことを形式化し、証明し、この挙動を制御するための単純な損失修正を導入する。
多様なデータセットの実験では、DDPNが現在のベースラインを精度、キャリブレーション、アウト・オブ・ディストリビューション検出で上回り、ディープカウントレグレッションにおける新たな最先端技術を確立することが示されている。
関連論文リスト
- Cooperative Bayesian and variance networks disentangle aleatoric and epistemic uncertainties [0.0]
実世界のデータは、不完全な測定やデータ生成プロセスに関する不完全な知識から生じる、アレラトリックな不確実性を含んでいる。
平均分散推定(MVE)ネットワークは、このような不確実性を学ぶことができるが、過度な適合を避けるためには、アドホックな正規化戦略を必要とする。
ベイズニューラルネットワークを用いて分散ネットワークを訓練し、その結果のモデルが平均推定を改善しつつ、アレタリックおよびてんかんの不確かさを解き放つことを示す。
論文 参考訳(メタデータ) (2025-05-05T15:50:52Z) - Probabilistic Contrastive Learning for Long-Tailed Visual Recognition [78.70453964041718]
細長い分布は、少数の少数派が限られた数のサンプルを含む実世界のデータにしばしば現れる。
近年の研究では、教師付きコントラスト学習がデータ不均衡を緩和する有望な可能性を示していることが明らかになっている。
本稿では,特徴空間の各クラスからのサンプルデータ分布を推定する確率論的コントラスト学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-03-11T13:44:49Z) - Beta quantile regression for robust estimation of uncertainty in the
presence of outliers [1.6377726761463862]
量子回帰(Quantile Regression)は、ディープニューラルネットワークにおけるアレタリック不確実性を推定するために用いられる。
本稿では、頑健な分散の概念を取り入れた量子レグレッションのためのロバストな解を提案する。
論文 参考訳(メタデータ) (2023-09-14T01:18:57Z) - Engression: Extrapolation through the Lens of Distributional Regression [2.519266955671697]
我々は、エングレースと呼ばれるニューラルネットワークに基づく分布回帰手法を提案する。
エングレスモデル(engression model)は、適合した条件分布からサンプリングできるという意味で生成され、高次元結果にも適している。
一方、最小二乗法や量子回帰法のような従来の回帰手法は、同じ仮定の下では不十分である。
論文 参考訳(メタデータ) (2023-07-03T08:19:00Z) - Variational Imbalanced Regression: Fair Uncertainty Quantification via Probabilistic Smoothing [11.291393872745951]
既存の回帰モデルは、ラベル分布が不均衡である場合、精度と不確実性の推定の両方において不足する傾向にある。
変分不均衡回帰(VIR)と呼ばれる確率的深層学習モデルを提案する。
VIRは不均衡回帰において良好に機能するが、自然に副産物として妥当な不確かさを推定する。
論文 参考訳(メタデータ) (2023-06-11T06:27:06Z) - Sparsifying Bayesian neural networks with latent binary variables and
normalizing flows [10.865434331546126]
潜伏二元系ベイズニューラルネットワーク(LBBNN)の2つの拡張について検討する。
まず、隠れたユニットを直接サンプリングするためにLRT(Local Reparametrization trick)を用いることで、より計算効率の良いアルゴリズムが得られる。
さらに, LBBNNパラメータの変動後分布の正規化フローを用いて, 平均体ガウス分布よりも柔軟な変動後分布を学習する。
論文 参考訳(メタデータ) (2023-05-05T09:40:28Z) - Toward Robust Uncertainty Estimation with Random Activation Functions [3.0586855806896045]
本稿では,ランダムアクティベーション関数(RAF)アンサンブルを用いた不確実性定量化手法を提案する。
RAF アンサンブルは、合成データセットと実世界のデータセットの両方において、最先端のアンサンブル不確実性定量化手法より優れている。
論文 参考訳(メタデータ) (2023-02-28T13:17:56Z) - Improved uncertainty quantification for neural networks with Bayesian
last layer [0.0]
不確実性定量化は機械学習において重要な課題である。
本稿では,BLL を用いた NN の対数乗算可能性の再構成を行い,バックプロパゲーションを用いた効率的なトレーニングを実現する。
論文 参考訳(メタデータ) (2023-02-21T20:23:56Z) - Uncertainty Modeling for Out-of-Distribution Generalization [56.957731893992495]
特徴統計を適切に操作することで、ディープラーニングモデルの一般化能力を向上させることができると論じる。
一般的な手法では、特徴統計を学習した特徴から測定された決定論的値とみなすことが多い。
我々は、学習中に合成された特徴統計を用いて、領域シフトの不確かさをモデル化することにより、ネットワークの一般化能力を向上させる。
論文 参考訳(メタデータ) (2022-02-08T16:09:12Z) - Transformers Can Do Bayesian Inference [56.99390658880008]
我々はPFN(Presideed Data Fitted Networks)を提案する。
PFNは、大規模機械学習技術におけるインコンテキスト学習を活用して、大規模な後部集合を近似する。
我々は、PFNがガウス過程をほぼ完璧に模倣し、難解問題に対する効率的なベイズ推定を可能にすることを示した。
論文 参考訳(メタデータ) (2021-12-20T13:07:39Z) - On the Double Descent of Random Features Models Trained with SGD [78.0918823643911]
勾配降下(SGD)により最適化された高次元におけるランダム特徴(RF)回帰特性について検討する。
本研究では, RF回帰の高精度な非漸近誤差境界を, 定常および適応的なステップサイズSGD設定の下で導出する。
理論的にも経験的にも二重降下現象を観察する。
論文 参考訳(メタデータ) (2021-10-13T17:47:39Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
既存の予測モデルは不確実な定量化を無視し、誤校正予測をもたらす。
不確実性を考慮した時系列予測のためのディープニューラルネットワークの最近の研究にもいくつかの制限がある。
本稿では,予測タスクを確率的生成過程としてモデル化し,EPIFNPと呼ばれる機能的ニューラルプロセスモデルを提案する。
論文 参考訳(メタデータ) (2021-06-07T18:31:47Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
ニューラルネットワークは、普遍関数近似器として機能することで、複雑なデータ分布から学習することに成功した。
彼らはしばしば予測に自信過剰であり、不正確で誤った確率的予測に繋がる。
本稿では,モデルが不当に過信である特徴空間の領域を探索し,それらの予測のエントロピーをラベルの以前の分布に対して条件的に高める手法を提案する。
論文 参考訳(メタデータ) (2021-02-22T07:02:37Z) - The Hidden Uncertainty in a Neural Networks Activations [105.4223982696279]
ニューラルネットワークの潜在表現の分布は、アウト・オブ・ディストリビューション(OOD)データの検出に成功している。
本研究は、この分布が、モデルの不確実性と相関しているかどうかを考察し、新しい入力に一般化する能力を示す。
論文 参考訳(メタデータ) (2020-12-05T17:30:35Z) - Unifying supervised learning and VAEs -- coverage, systematics and
goodness-of-fit in normalizing-flow based neural network models for
astro-particle reconstructions [0.0]
統計的不確実性、包括性、体系的不確実性、あるいは適度な尺度はしばしば計算されない。
データとラベルの共分散のKL分割の目的は、教師付き学習と変分オートエンコーダの統合を可能にすることを示す。
本稿では,特定の「基本順序」輪郭の数値積分を伴わずにカバレッジ確率を計算する方法について論じる。
論文 参考訳(メタデータ) (2020-08-13T11:28:57Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
本稿では,予測の多様性を奨励することで,ニューラルネットワークの効果的なアンサンブルを生成する問題をターゲットにする。
そこで本研究では,潜伏変数の学習における逆損失の多様性を明示的に最適化し,マルチモーダルデータのモデリングに必要な出力予測の多様性を得る。
最も競争力のあるベースラインと比較して、データ分布の変化の下で、分類精度が大幅に向上した。
論文 参考訳(メタデータ) (2020-03-10T03:10:41Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
本稿では,1回のフォワードパスで,テスト時に分布データポイントの発見と拒否が可能な決定論的ディープモデルを訓練する手法を提案する。
我々は,新しい損失関数とセントロイド更新方式を用いて,これらをスケールトレーニングし,ソフトマックスモデルの精度に適合させる。
論文 参考訳(メタデータ) (2020-03-04T12:27:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。