Reducing Aleatoric and Epistemic Uncertainty through Multi-modal Data Acquisition
- URL: http://arxiv.org/abs/2501.18268v1
- Date: Thu, 30 Jan 2025 11:05:59 GMT
- Title: Reducing Aleatoric and Epistemic Uncertainty through Multi-modal Data Acquisition
- Authors: Arthur Hoarau, Benjamin Quost, Sébastien Destercke, Willem Waegeman,
- Abstract summary: This paper introduces an innovative data acquisition framework where uncertainty disentanglement leads to actionable decisions.
The main hypothesis is that aleatoric uncertainty decreases as the number of modalities increases.
We provide proof-of-concept implementations on two multi-modal datasets to showcase our data acquisition framework.
- Score: 5.468547489755107
- License:
- Abstract: To generate accurate and reliable predictions, modern AI systems need to combine data from multiple modalities, such as text, images, audio, spreadsheets, and time series. Multi-modal data introduces new opportunities and challenges for disentangling uncertainty: it is commonly assumed in the machine learning community that epistemic uncertainty can be reduced by collecting more data, while aleatoric uncertainty is irreducible. However, this assumption is challenged in modern AI systems when information is obtained from different modalities. This paper introduces an innovative data acquisition framework where uncertainty disentanglement leads to actionable decisions, allowing sampling in two directions: sample size and data modality. The main hypothesis is that aleatoric uncertainty decreases as the number of modalities increases, while epistemic uncertainty decreases by collecting more observations. We provide proof-of-concept implementations on two multi-modal datasets to showcase our data acquisition framework, which combines ideas from active learning, active feature acquisition and uncertainty quantification.
Related papers
- Multimodal Learning with Uncertainty Quantification based on Discounted Belief Fusion [3.66486428341988]
Multimodal AI models are increasingly used in fields like healthcare, finance, and autonomous driving.
Uncertainty arising from noise, insufficient evidence, or conflicts between modalities is crucial for reliable decision-making.
We propose a novel multimodal learning method with order-invariant evidence fusion and introduce a conflict-based discounting mechanism.
arXiv Detail & Related papers (2024-12-23T22:37:18Z) - EsurvFusion: An evidential multimodal survival fusion model based on Gaussian random fuzzy numbers [13.518282190712348]
EsurvFusion is designed to combine multimodal data at the decision level.
It estimates modality-level reliability through a reliability discounting layer.
This is the first work that studies multimodal survival analysis with both uncertainty and reliability.
arXiv Detail & Related papers (2024-12-02T07:35:29Z) - Multimodal Fusion on Low-quality Data: A Comprehensive Survey [110.22752954128738]
This paper surveys the common challenges and recent advances of multimodal fusion in the wild.
We identify four main challenges that are faced by multimodal fusion on low-quality data.
This new taxonomy will enable researchers to understand the state of the field and identify several potential directions.
arXiv Detail & Related papers (2024-04-27T07:22:28Z) - One step closer to unbiased aleatoric uncertainty estimation [71.55174353766289]
We propose a new estimation method by actively de-noising the observed data.
By conducting a broad range of experiments, we demonstrate that our proposed approach provides a much closer approximation to the actual data uncertainty than the standard method.
arXiv Detail & Related papers (2023-12-16T14:59:11Z) - Hinge-Wasserstein: Estimating Multimodal Aleatoric Uncertainty in Regression Tasks [9.600416563894658]
We study regression from images to parameter values and here it is common to detect uncertainty by predicting probability distributions.
Traditional loss functions lead to poor probability distribution estimates and severe overconfidence, in the absence of full ground truth distributions.
We propose hinge-Wasserstein -- a simple improvement of the Wasserstein loss that reduces the penalty for weak secondary modes during training.
arXiv Detail & Related papers (2023-06-01T11:20:09Z) - Informative Data Selection with Uncertainty for Multi-modal Object
Detection [25.602915381482468]
We propose a universal uncertainty-aware multi-modal fusion model.
Our model reduces the randomness in fusion and generates reliable output.
Our fusion model is proven to resist severe noise interference like Gaussian, motion blur, and frost, with only slight degradation.
arXiv Detail & Related papers (2023-04-23T16:36:13Z) - Exploring and Exploiting Uncertainty for Incomplete Multi-View
Classification [47.82610025809371]
We propose an Uncertainty-induced Incomplete Multi-View Data Classification (UIMC) model to classify incomplete multi-view data.
Specifically, we model each missing data with a distribution conditioning on the available views and thus introducing uncertainty.
Our method establishes a state-of-the-art performance in terms of both performance and trustworthiness.
arXiv Detail & Related papers (2023-04-11T11:57:48Z) - ZigZag: Universal Sampling-free Uncertainty Estimation Through Two-Step Inference [54.17205151960878]
We introduce a sampling-free approach that is generic and easy to deploy.
We produce reliable uncertainty estimates on par with state-of-the-art methods at a significantly lower computational cost.
arXiv Detail & Related papers (2022-11-21T13:23:09Z) - Exploring the Trade-off between Plausibility, Change Intensity and
Adversarial Power in Counterfactual Explanations using Multi-objective
Optimization [73.89239820192894]
We argue that automated counterfactual generation should regard several aspects of the produced adversarial instances.
We present a novel framework for the generation of counterfactual examples.
arXiv Detail & Related papers (2022-05-20T15:02:53Z) - Uncertainty-Aware Multiple Instance Learning fromLarge-Scale Long Time
Series Data [20.2087807816461]
This paper proposes an uncertainty-aware multiple instance (MIL) framework to identify the most relevant periodautomatically.
We further incorporate another modality toaccommodate unreliable predictions by training a separate model and conduct uncertainty aware fusion.
Empirical resultsdemonstrate that the proposed method can effectively detect thetypes of vessels based on the trajectory.
arXiv Detail & Related papers (2021-11-16T17:09:02Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.