論文の概要: In-Context Learning User Simulators for Task-Oriented Dialog Systems
- arxiv url: http://arxiv.org/abs/2306.00774v1
- Date: Thu, 1 Jun 2023 15:06:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-02 15:27:41.291779
- Title: In-Context Learning User Simulators for Task-Oriented Dialog Systems
- Title(参考訳): タスク指向対話システムのための文脈学習ユーザシミュレータ
- Authors: Silvia Terragni, Modestas Filipavicius, Nghia Khau, Bruna Guedes,
Andr\'e Manso, Roland Mathis
- Abstract要約: 本稿では,タスク指向対話システムにおけるユーザシミュレーションにおける大規模言語モデルの新たな応用について述べる。
提案手法は,これらのモデルのパワーを生かして,ユーザ目標と限られた対話例に基づく多様な発話を生成する。
- 参考スコア(独自算出の注目度): 1.7086737326992172
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a novel application of large language models in user
simulation for task-oriented dialog systems, specifically focusing on an
in-context learning approach. By harnessing the power of these models, the
proposed approach generates diverse utterances based on user goals and limited
dialog examples. Unlike traditional simulators, this method eliminates the need
for labor-intensive rule definition or extensive annotated data, making it more
efficient and accessible. Additionally, an error analysis of the interaction
between the user simulator and dialog system uncovers common mistakes,
providing valuable insights into areas that require improvement. Our
implementation is available at
https://github.com/telepathylabsai/prompt-based-user-simulator.
- Abstract(参考訳): 本稿では,タスク指向対話システムにおけるユーザシミュレーションにおける大規模言語モデルの新たな応用について述べる。
提案手法は,これらのモデルのパワーを生かして,ユーザ目標と限られた対話例に基づく多様な発話を生成する。
従来のシミュレータとは異なり、この方法は労働集約的なルール定義や広範な注釈付きデータを必要としないため、より効率的でアクセスしやすい。
さらに、ユーザシミュレータとダイアログシステム間のインタラクションのエラー解析により、一般的な誤りが判明し、改善を必要とする領域に関する貴重な洞察を提供する。
実装はhttps://github.com/telepathylabsai/prompt-based-user-simulatorで利用可能です。
関連論文リスト
- Reliable LLM-based User Simulator for Task-Oriented Dialogue Systems [2.788542465279969]
本稿では,ドメイン対応ユーザシミュレータDAUSを紹介する。
タスク指向対話の実例について,DAUSを微調整する。
2つの関連するベンチマークの結果は、ユーザ目標達成の点で大幅に改善されている。
論文 参考訳(メタデータ) (2024-02-20T20:57:47Z) - Dialogue-based generation of self-driving simulation scenarios using
Large Language Models [14.86435467709869]
シミュレーションは自動運転車のコントローラーを開発し評価するための貴重なツールである。
現在のシミュレーションフレームワークは、高度に専門的なドメイン固有言語によって駆動される。
簡潔な英語の発話と、ユーザの意図をキャプチャする実行可能なコードの間には、しばしばギャップがある。
論文 参考訳(メタデータ) (2023-10-26T13:07:01Z) - Improving Conversational Recommendation Systems via Counterfactual Data
Simulation [73.4526400381668]
会話推薦システム(CRS)は、自然言語による会話を通じてレコメンデーションサービスを提供することを目的としている。
既存のCRSアプローチは、トレーニングデータの不足により、トレーニングの不十分な問題に悩まされることが多い。
我々は,CRSにおけるデータ不足の問題を緩和するため,CFCRSと呼ばれるCRSに対するCounterFactualデータシミュレーション手法を提案する。
論文 参考訳(メタデータ) (2023-06-05T12:48:56Z) - Stabilized In-Context Learning with Pre-trained Language Models for Few
Shot Dialogue State Tracking [57.92608483099916]
大規模事前学習言語モデル(PLM)は、多くのNLPタスクにまたがる優れた性能を示している。
対話状態追跡(DST)のようなより複雑なタスクでは、望ましい意図を確実に伝達するプロンプトを設計するのは簡単ではない。
対話文の長さを制限するためのサリエンシモデルを導入し、クエリ毎に多くの例を含めることができます。
論文 参考訳(メタデータ) (2023-02-12T15:05:10Z) - Metaphorical User Simulators for Evaluating Task-oriented Dialogue
Systems [80.77917437785773]
タスク指向対話システム(TDS)は、主にオフラインまたは人間による評価によって評価される。
本稿では,エンド・ツー・エンドのTDS評価のためのメタファ型ユーザシミュレータを提案する。
また,異なる機能を持つ対話システムなどの変種を生成するためのテスタベースの評価フレームワークを提案する。
論文 参考訳(メタデータ) (2022-04-02T05:11:03Z) - Alexa Conversations: An Extensible Data-driven Approach for Building
Task-oriented Dialogue Systems [21.98135285833616]
従来の目標指向対話システムは、自然言語理解、対話状態追跡、政策学習、応答生成など、さまざまなコンポーネントに依存している。
スケーラブルかつデータ効率の高い,目標指向の対話システム構築のための新たなアプローチを提案する。
論文 参考訳(メタデータ) (2021-04-19T07:09:27Z) - Dialog Simulation with Realistic Variations for Training Goal-Oriented
Conversational Systems [14.206866126142002]
ゴール指向のダイアログシステムにより、ユーザーは映画に関する情報をリクエストしたり、チケットを予約したりといった特定の目標を達成することができる。
本稿では,注釈付きダイアログとダイアログスキーマから,注釈付きダイアログの大規模なコーパスを自動生成する手法を提案する。
ベースラインダイアログ生成手法と比較して,ホールドアウトテストセットの50%の相対精度を実現した。
論文 参考訳(メタデータ) (2020-11-16T19:39:15Z) - SOLOIST: Building Task Bots at Scale with Transfer Learning and Machine
Teaching [81.45928589522032]
トランスフォーマーに基づく自動回帰言語モデルを用いて,モジュール型タスク指向対話システムをパラメータ化する。
タスクグラウンド応答生成モデルである異種ダイアログコーパスの事前学習を行う。
実験により、SOLOISTは、よく研究されたタスク指向のダイアログベンチマーク上で、新しい最先端のダイアログを生成する。
論文 参考訳(メタデータ) (2020-05-11T17:58:34Z) - Conversation Learner -- A Machine Teaching Tool for Building Dialog
Managers for Task-Oriented Dialog Systems [57.082447660944965]
Conversation Learnerは、ダイアログマネージャを構築するための機械学習ツールである。
ダイアログ作成者が慣れ親しんだツールを使ってダイアログフローを作成し、ダイアログフローをパラメトリックモデルに変換することができる。
ユーザシステムダイアログをトレーニングデータとして活用することで、ダイアログ作成者が時間とともにダイアログマネージャを改善することができる。
論文 参考訳(メタデータ) (2020-04-09T00:10:54Z) - Multi-Agent Task-Oriented Dialog Policy Learning with Role-Aware Reward
Decomposition [64.06167416127386]
本稿では,システムとユーザの両方をダイアログエージェントとみなすマルチエージェントダイアログポリシー学習を提案する。
2人のエージェントが互いに相互作用し、同時に一緒に学習されます。
その結果,本手法がシステムポリシとユーザポリシを同時に構築できることが示唆された。
論文 参考訳(メタデータ) (2020-04-08T04:51:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。