A Probabilistic Relaxation of the Two-Stage Object Pose Estimation
Paradigm
- URL: http://arxiv.org/abs/2306.00892v1
- Date: Thu, 1 Jun 2023 16:50:40 GMT
- Title: A Probabilistic Relaxation of the Two-Stage Object Pose Estimation
Paradigm
- Authors: Onur Beker
- Abstract summary: We propose a matching-free probabilistic formulation for object pose estimation.
It enables unified and concurrent optimization of both visual correspondence and geometric alignment.
It can represent different plausible modes of the entire distribution of likely poses.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing object pose estimation methods commonly require a one-to-one point
matching step that forces them to be separated into two consecutive stages:
visual correspondence detection (e.g., by matching feature descriptors as part
of a perception front-end) followed by geometric alignment (e.g., by optimizing
a robust estimation objective for pointcloud registration or
perspective-n-point). Instead, we propose a matching-free probabilistic
formulation with two main benefits: i) it enables unified and concurrent
optimization of both visual correspondence and geometric alignment, and ii) it
can represent different plausible modes of the entire distribution of likely
poses. This in turn allows for a more graceful treatment of geometric
perception scenarios where establishing one-to-one matches between points is
conceptually ill-defined, such as textureless, symmetrical and/or occluded
objects and scenes where the correct pose is uncertain or there are multiple
equally valid solutions.
Related papers
- End-to-End Probabilistic Geometry-Guided Regression for 6DoF Object Pose Estimation [5.21401636701889]
State-of-the-art 6D object pose estimators directly predict an object pose given an object observation.
We reformulate the state-of-the-art algorithm GDRNPP and introduce EPRO-GDR.
Our solution shows that predicting a pose distribution instead of a single pose can improve state-of-the-art single-view pose estimation.
arXiv Detail & Related papers (2024-09-18T09:11:31Z) - DVMNet: Computing Relative Pose for Unseen Objects Beyond Hypotheses [59.51874686414509]
Current approaches approximate the continuous pose representation with a large number of discrete pose hypotheses.
We present a Deep Voxel Matching Network (DVMNet) that eliminates the need for pose hypotheses and computes the relative object pose in a single pass.
Our method delivers more accurate relative pose estimates for novel objects at a lower computational cost compared to state-of-the-art methods.
arXiv Detail & Related papers (2024-03-20T15:41:32Z) - Q-REG: End-to-End Trainable Point Cloud Registration with Surface
Curvature [81.25511385257344]
We present a novel solution, Q-REG, which utilizes rich geometric information to estimate the rigid pose from a single correspondence.
Q-REG allows to formalize the robust estimation as an exhaustive search, hence enabling end-to-end training.
We demonstrate in the experiments that Q-REG is agnostic to the correspondence matching method and provides consistent improvement both when used only in inference and in end-to-end training.
arXiv Detail & Related papers (2023-09-27T20:58:53Z) - IMP: Iterative Matching and Pose Estimation with Adaptive Pooling [34.36397639248686]
We propose an textbfefficient IMP, called EIMP, to dynamically discard keypoints without potential matches.
Experiments on YFCC100m, Scannet, and Aachen Day-Night datasets demonstrate that the proposed method outperforms previous approaches in terms of accuracy and efficiency.
arXiv Detail & Related papers (2023-04-28T13:25:50Z) - Object-based SLAM utilizing unambiguous pose parameters considering
general symmetry types [20.579218922577244]
symmetric objects, whose observation at different viewpoints can be identical, can deteriorate the performance of simultaneous localization and mapping.
This work proposes a system for robustly optimizing the pose of cameras and objects even in the presence of symmetric objects.
arXiv Detail & Related papers (2023-03-13T03:07:59Z) - 6DOF Pose Estimation of a 3D Rigid Object based on Edge-enhanced Point
Pair Features [20.33119373900788]
We propose an efficient 6D pose estimation method based on the point pair feature (PPF) framework.
A pose hypothesis validation approach is proposed to resolve the symmetric ambiguity by calculating edge matching degree.
arXiv Detail & Related papers (2022-09-17T07:05:50Z) - Probabilistic Warp Consistency for Weakly-Supervised Semantic
Correspondences [118.6018141306409]
We propose Probabilistic Warp Consistency, a weakly-supervised learning objective for semantic matching.
We first construct an image triplet by applying a known warp to one of the images in a pair depicting different instances of the same object class.
Our objective also brings substantial improvements in the strongly-supervised regime, when combined with keypoint annotations.
arXiv Detail & Related papers (2022-03-08T18:55:11Z) - Semi-supervised Dense Keypoints Using Unlabeled Multiview Images [22.449168666514677]
This paper presents a new end-to-end semi-supervised framework to learn a dense keypoint detector using unlabeled multiview images.
A key challenge lies in finding the exact correspondences between the dense keypoints in multiple views.
We derive a new probabilistic epipolar constraint that encodes the two desired properties.
arXiv Detail & Related papers (2021-09-20T04:57:57Z) - Category Level Object Pose Estimation via Neural Analysis-by-Synthesis [64.14028598360741]
In this paper we combine a gradient-based fitting procedure with a parametric neural image synthesis module.
The image synthesis network is designed to efficiently span the pose configuration space.
We experimentally show that the method can recover orientation of objects with high accuracy from 2D images alone.
arXiv Detail & Related papers (2020-08-18T20:30:47Z) - Object-Centric Multi-View Aggregation [86.94544275235454]
We present an approach for aggregating a sparse set of views of an object in order to compute a semi-implicit 3D representation in the form of a volumetric feature grid.
Key to our approach is an object-centric canonical 3D coordinate system into which views can be lifted, without explicit camera pose estimation.
We show that computing a symmetry-aware mapping from pixels to the canonical coordinate system allows us to better propagate information to unseen regions.
arXiv Detail & Related papers (2020-07-20T17:38:31Z) - Point-Set Anchors for Object Detection, Instance Segmentation and Pose
Estimation [85.96410825961966]
We argue that the image features extracted at a central point contain limited information for predicting distant keypoints or bounding box boundaries.
To facilitate inference, we propose to instead perform regression from a set of points placed at more advantageous positions.
We apply this proposed framework, called Point-Set Anchors, to object detection, instance segmentation, and human pose estimation.
arXiv Detail & Related papers (2020-07-06T15:59:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.