Verifying a stabilizer state with few observables but many shots
- URL: http://arxiv.org/abs/2412.16690v2
- Date: Fri, 18 Jul 2025 12:26:39 GMT
- Title: Verifying a stabilizer state with few observables but many shots
- Authors: Dirk Oliver Theis,
- Abstract summary: We propose a quantum-state-certification protocol for stabilizer states, motivated by application in in-situ testing of NISQ-era quantum computer systems.<n>We provide mathematically rigorous analysis of the false-negative and false-positive rates.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a quantum-state-certification protocol for stabilizer states, motivated by application in in-situ testing of NISQ-era quantum computer systems: The number of qubits is bounded, and in terms of cost of running the protocol, identical repetition of quantum circuits contribute negligibly compared to switching the measurement bases. The method builds on Direct Fidelity Estimation and work by Somma et al.~(2006), but replaces linear averages by a minimum over estimates of expectation values. We provide mathematically rigorous analysis of the false-negative and false-positive rates.
Related papers
- Calibration of Quantum Devices via Robust Statistical Methods [45.464983015777314]
We numerically analyze advanced statistical methods for Bayesian inference against the state-of-the-art in quantum parameter learning.<n>We show advantages of these approaches over existing ones, namely under multi-modality and high dimensionality.<n>Our findings have applications in challenging quantumcharacterization tasks namely learning the dynamics of open quantum systems.
arXiv Detail & Related papers (2025-07-09T15:22:17Z) - Dynamic Estimation Loss Control in Variational Quantum Sensing via Online Conformal Inference [39.72602887300498]
Current variational quantum sensing methods lack rigorous performance guarantees.<n>This paper proposes an online control framework for VQS that dynamically updates the variational parameters while providing deterministic error bars on the estimates.<n> Experiments on a quantum magnetometry task confirm that the proposed dynamic VQS approach maintains the required reliability over time, while still yielding precise estimates.
arXiv Detail & Related papers (2025-05-29T12:19:07Z) - In-situ mid-circuit qubit measurement and reset in a single-species trapped-ion quantum computing system [34.82692226532414]
We implement in-situ mid-circuit measurement and reset (MCMR) operations on a trapped-ion quantum computing system.
We introduce and compare two methods for isolating data qubits from measured qubits.
We experimentally demonstrate both methods on a crystal of two $171textrmYb+$ ions.
arXiv Detail & Related papers (2025-04-17T00:10:35Z) - Reducing the sampling complexity of energy estimation in quantum many-body systems using empirical variance information [45.18582668677648]
We consider the problem of estimating the energy of a quantum state preparation for a given Hamiltonian in Pauli decomposition.<n>We construct an adaptive estimator using the state's actual variance.
arXiv Detail & Related papers (2025-02-03T19:00:01Z) - Quantum Homogenization as a Quantum Steady State Protocol on NISQ Hardware [42.52549987351643]
Quantum homogenization is a reservoir-based quantum state approximation protocol.<n>We extend the standard quantum homogenization protocol to the dynamically-equivalent ($mathttSWAP$)$alpha$ formulation.<n>We show that our proposed protocol yields a completely positive, trace preserving (CPTP) map under which the code subspace is correctable.
arXiv Detail & Related papers (2024-12-19T05:50:54Z) - Characterizing entangled state update in different reference frames with weak measurements [0.0]
In this work, we investigate the characterization of updated states of multi-partite entangled qubit states with non-destructive weak measurements.<n>As is well-known, the updated state at intermediate times is frame-dependent, and outcome randomness intrinsic to projective measurements prevents any information to be acquired on the updated state.
arXiv Detail & Related papers (2024-10-27T13:57:29Z) - Quantum state testing with restricted measurements [30.641152457827527]
We develop an information-theoretic framework that yields unified copy complexity lower bounds for restricted families of non-adaptive measurements.
We demonstrate a separation between these two schemes, showing the power of randomized measurement schemes over fixed ones.
arXiv Detail & Related papers (2024-08-30T17:48:00Z) - Heisenberg-limited adaptive gradient estimation for multiple observables [0.39102514525861415]
In quantum mechanics, measuring the expectation value of a general observable has an inherent statistical uncertainty.
We provide an adaptive quantum algorithm for estimating the expectation values of $M$ general observables within root mean squared error.
Our method paves a new way to precisely understand and predict various physical properties in complicated quantum systems using quantum computers.
arXiv Detail & Related papers (2024-06-05T14:16:47Z) - Quantum Benchmarking via Random Dynamical Quantum Maps [3.5297361401370044]
We present a benchmarking protocol for universal quantum computers.
This protocol provides a holistic assessment of system-wide error rates.
We implement the protocol on state-of-the-art transmon qubits provided by IBM Quantum.
arXiv Detail & Related papers (2024-04-29T16:37:11Z) - Quantum Error Suppression with Subgroup Stabilisation [3.4719087457636792]
Quantum state purification is the functionality that, given multiple copies of an unknown state, outputs a state with increased purity.
We propose an effective state purification gadget with a moderate quantum overhead by projecting $M$ noisy quantum inputs to their subspace.
Our method, applied in every short evolution over $M$ redundant copies of noisy states, can suppress both coherent and errors by a factor of $1/M$, respectively.
arXiv Detail & Related papers (2024-04-15T17:51:47Z) - The role of shared randomness in quantum state certification with
unentangled measurements [36.19846254657676]
We study quantum state certification using unentangled quantum measurements.
$Theta(d2/varepsilon2)$ copies are necessary and sufficient for state certification.
We develop a unified lower bound framework for both fixed and randomized measurements.
arXiv Detail & Related papers (2024-01-17T23:44:52Z) - An Exponential Reduction in Training Data Sizes for Machine Learning
Derived Entanglement Witnesses [45.17332714965704]
We propose a support vector machine (SVM) based approach for generating an entanglement witness.
For $N$ qubits, the SVM portion of this approach requires only $O(6N)$ training states, whereas an existing method needs $O(24N)$.
arXiv Detail & Related papers (2023-11-30T00:45:04Z) - Secure and robust randomness with sequential quantum measurements [0.0]
We prove a Tsirelson-like boundary for sequential quantum correlations, which represents a trade-off in nonlocality shared by sequential users.<n>Our simple qubit protocol reaches this boundary, and numerical analysis shows improved robustness under realistic noise.<n>This study advances understanding of sequential quantum correlations and offers insights for efficient device-independent protocols.
arXiv Detail & Related papers (2023-09-21T17:50:29Z) - Fidelity estimation of quantum states on a silicon photonic chip [0.03078691410268859]
We adapt a previously reported optimal state verification protocol (Phys. Rev. Lett. 120, 170502) for fidelity estimation of two-qubit states.
We demonstrate the protocol experimentally using a fully-programmable silicon photonic two-qubit chip.
arXiv Detail & Related papers (2023-06-01T18:16:33Z) - Reliable Quantum Communications based on Asymmetry in Distillation and Coding [35.693513369212646]
We address the problem of reliable provision of entangled qubits in quantum computing schemes.
We combine indirect transmission based on teleportation and distillation; (2) direct transmission, based on quantum error correction (QEC)
Our results show that ad-hoc asymmetric codes give, compared to conventional QEC, a performance boost and codeword size reduction both in a single link and in a quantum network scenario.
arXiv Detail & Related papers (2023-05-01T17:13:23Z) - Fidelity-based distance bounds for $N$-qubit approximate quantum error
correction [0.0]
Eastin-Knill theorem states that a quantum code cannot correct errors exactly, possess continuous symmetries, and implement a universal set of gates transversely.
It is common to employ a complementary measure of fidelity as a way to quantify quantum state distinguishability and benchmark approximations in error correction.
We address two distance measures based on the sub- and superfidelities as a way to bound error approximations, which in turn require a lower computational cost.
arXiv Detail & Related papers (2022-12-08T16:10:58Z) - A Quantum Algorithm Framework for Discrete Probability Distributions with Applications to Rényi Entropy Estimation [13.810917492304565]
We propose a unified quantum algorithm framework for estimating properties of discrete probability distributions.
Our framework estimates $alpha$-R'enyi entropy $H_alpha(p)$ to within additive error $epsilon$ with probability at least $2/3$.
arXiv Detail & Related papers (2022-12-03T08:01:55Z) - An entanglement-based volumetric benchmark for near-term quantum
hardware [45.80648481065638]
We introduce a benchmark for near-term quantum platforms based on the generation and verification of genuine entanglement across n-qubits.
Our benchmark evaluates the robustness of multipartite and bipartite n-qubit entanglement with respect to many sources of hardware noise.
arXiv Detail & Related papers (2022-09-01T18:27:41Z) - Resource analysis for quantum-aided Byzantine agreement with the four-qubit singlet state [1.2094859111770522]
In distributed computing, a Byzantine fault is a condition where a component behaves inconsistently, showing different symptoms to different components of the system.
Our work highlights important engineering aspects of the future deployment of quantum communication protocols with multi-qubit entangled states.
arXiv Detail & Related papers (2022-07-11T15:17:58Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Parallel self-testing of EPR pairs under computational assumptions [12.847847919343646]
We show that a single EPR pair of a single quantum device can be self-tested under computational assumptions.
We show that our protocol can be passed with probability negligibly close to $1$ by an honest quantum device.
A simplified version of our protocol is the first that can efficiently certify an arbitrary number of qubits of a single cloud quantum computer.
arXiv Detail & Related papers (2022-01-31T18:42:45Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Efficient Verification of Anticoncentrated Quantum States [0.38073142980733]
I present a novel method for estimating the fidelity $F(mu,tau)$ between a preparable quantum state $mu$ and a classically specified target state $tau$.
I also present a more sophisticated version of the method, which uses any efficiently preparable and well-characterized quantum state as an importance sampler.
arXiv Detail & Related papers (2020-12-15T18:01:11Z) - Virtual Distillation for Quantum Error Mitigation [0.6745502291821955]
Quantum computers have relatively high levels of noise, making it difficult to use them to perform useful calculations.
We propose a near-term friendly strategy to mitigate errors by entangling and measuring $M$ copies of a noisy state.
We demonstrate that virtual distillation is capable of suppressing errors by multiple orders of magnitude and explain how this effect is enhanced as the system size grows.
arXiv Detail & Related papers (2020-11-13T18:58:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.