Precision magnetometry exploiting excited state quantum phase transitions
- URL: http://arxiv.org/abs/2306.01126v5
- Date: Fri, 5 Jul 2024 12:42:51 GMT
- Title: Precision magnetometry exploiting excited state quantum phase transitions
- Authors: Qian Wang, Ugo Marzolino,
- Abstract summary: We focus on the Lipkin-Meshkov-Glick model that exhibits excited state quantum phase transitions at different magnetic fields.
We show broad peaks of the Fisher information, and propose efficient schemes for precision magnetometry.
- Score: 7.142158555793151
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Critical behaviour in phase transitions is a resource for enhanced precision metrology. The reason is that the function, known as Fisher information, is superextensive at critical points, and, at the same time, quantifies performances of metrological protocols. Therefore, preparing metrological probes at phase transitions provides enhanced precision in measuring the transition control parameter. We focus on the Lipkin-Meshkov-Glick model that exhibits excited state quantum phase transitions at different magnetic fields. Resting on the model spectral properties, we show broad peaks of the Fisher information, and propose efficient schemes for precision magnetometry. The Lipkin-Meshkov-Glick model was first introduced for superconductivity and for nuclear systems, and recently realised in several condensed matter platforms. The above metrological schemes can be also exploited to measure microscopic properties of systems able to simulate the Lipkin-Meshkov-Glick model.
Related papers
- Quantum metrology with a continuous-variable system [0.0]
We discuss precision limits and optimal strategies in quantum metrology and sensing with a single mode of quantum continuous variables.
We summarize some of the main experimental achievements and present emerging platforms for continuous-variable sensing.
arXiv Detail & Related papers (2024-11-06T18:57:07Z) - Criticality-Enhanced Quantum Sensing with a Parametric Superconducting Resonator [0.0]
We implement a critical quantum sensor using a superconducting parametric (i.e., two-photon driven) Kerr resonator.
We show that quadratic precision scaling with respect to the system size can be achieved with finite values of the Kerr nonlinearity.
arXiv Detail & Related papers (2024-09-30T05:43:08Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Quantum metric and metrology with parametrically-driven Tavis-Cummings
models [4.419622364505575]
We study the quantum metric in a driven Tavis-Cummings model, comprised of multiple qubits interacting with a quantized photonic field.
We analytically solved the eigenenergies and eigenstates, and numerically simulated the system behaviors near the critical point.
arXiv Detail & Related papers (2023-12-13T14:20:03Z) - Combining critical and quantum metrology [0.0]
We introduce an approach combining two methodologies into a unified protocol applicable to closed and driven-dissipative systems.
We provide analytical expressions for the quantum and classical Fisher information in such a setup, elucidating as well a straightforward measurement approach.
We showcase these results by focusing on the squeezing Hamiltonian, which characterizes the thermodynamic limit of Dicke and Lipkin-Meshkov-Glick Hamiltonians.
arXiv Detail & Related papers (2023-11-28T04:21:39Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Critical parametric quantum sensing [0.0]
We assess the metrological power of parametric Kerr resonators undergoing driven-dissipative transitions.
We show that the Heisenberg precision can be achieved with experimentally reachable parameters.
arXiv Detail & Related papers (2021-07-09T15:44:26Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
We develop an approach to characterize the dynamics of a quantum device and learn device parameters.
This approach outperforms physics-agnostic recurrent neural networks trained on numerically generated and experimental data.
This demonstration shows how leveraging domain knowledge improves the accuracy and efficiency of this characterization task.
arXiv Detail & Related papers (2021-06-24T15:58:57Z) - Probing the topological Anderson transition with quantum walks [48.7576911714538]
We consider one-dimensional quantum walks in optical linear networks with synthetically introduced disorder and tunable system parameters.
The option to directly monitor the walker's probability distribution makes this optical platform ideally suited for the experimental observation of the unique signatures of the one-dimensional topological Anderson transition.
arXiv Detail & Related papers (2021-02-01T21:19:15Z) - In and out of equilibrium quantum metrology with mean-field quantum
criticality [68.8204255655161]
We study the influence that collective transition phenomena have on quantum metrological protocols.
The single spherical quantum spin (SQS) serves as stereotypical toy model that allows analytical insights on a mean-field level.
arXiv Detail & Related papers (2020-01-09T19:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.