Criticality-Enhanced Quantum Sensing with a Parametric Superconducting Resonator
- URL: http://arxiv.org/abs/2409.19968v1
- Date: Mon, 30 Sep 2024 05:43:08 GMT
- Title: Criticality-Enhanced Quantum Sensing with a Parametric Superconducting Resonator
- Authors: Guillaume Beaulieu, Fabrizio Minganti, Simone Frasca, Marco Scigliuzzo, Simone Felicetti, Roberto Di Candia, Pasquale Scarlino,
- Abstract summary: We implement a critical quantum sensor using a superconducting parametric (i.e., two-photon driven) Kerr resonator.
We show that quadratic precision scaling with respect to the system size can be achieved with finite values of the Kerr nonlinearity.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum metrology, a cornerstone of quantum technologies, exploits entanglement and superposition to achieve higher precision than classical protocols in parameter estimation tasks. When combined with critical phenomena such as phase transitions, the divergence of quantum fluctuations is predicted to enhance the performance of quantum sensors. Here, we implement a critical quantum sensor using a superconducting parametric (i.e., two-photon driven) Kerr resonator. The sensor, a linear resonator terminated by a supercondicting quantum interference device, operates near the critical point of a finite-component second-order dissipative phase transition obtained by scaling the system parameters. We analyze the performance of a frequency-estimation protocol and show that quadratic precision scaling with respect to the system size can be achieved with finite values of the Kerr nonlinearity. Since each photon emitted from the cavity carries more information about the parameter to be estimated compared to its classical counterpart, our protocol opens perspectives for faster or more precise metrological protocols. Our results demonstrate that quantum advantage in a sensing protocol can be achieved by exploiting a finite-component phase transition.
Related papers
- Quantum-enhanced sensing of spin-orbit coupling without fine-tuning [0.0]
Heisenberg limited enhanced precision is achieved across a wide range of parameters.
We have demonstrated quantum enhanced sensitivity for both single particle and interacting many-body probes.
arXiv Detail & Related papers (2024-11-01T14:00:23Z) - Collective quantum enhancement in critical quantum sensing [37.69303106863453]
We show that collective quantum advantage can be achieved with a multipartite critical quantum sensor based on a parametrically coupled Kerr resonators chain.
We derive analytical solutions for the low-energy spectrum of this unconventional quantum many-body system.
We evaluate the scaling of the quantum Fisher information with respect to fundamental resources, and find that the critical chain achieves a quadratic enhancement in the number of resonators.
arXiv Detail & Related papers (2024-07-25T14:08:39Z) - Quantum sensing in Kerr parametric oscillators [0.0]
We show how the analysis of the phase space structure of the classical limit of Kerr parametric oscillators can be used for determining control parameters.
We also explore how quantum sensing can benefit from excited-state quantum phase transitions, even in the absence of a conventional quantum phase transition.
arXiv Detail & Related papers (2024-07-19T18:00:00Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Quantum metric and metrology with parametrically-driven Tavis-Cummings
models [4.419622364505575]
We study the quantum metric in a driven Tavis-Cummings model, comprised of multiple qubits interacting with a quantized photonic field.
We analytically solved the eigenenergies and eigenstates, and numerically simulated the system behaviors near the critical point.
arXiv Detail & Related papers (2023-12-13T14:20:03Z) - Entanglement catalysis for quantum states and noisy channels [41.94295877935867]
We investigate properties of entanglement and its role for quantum communication.
For transformations between bipartite pure states, we prove the existence of a universal catalyst.
We further develop methods to estimate the number of singlets which can be established via a noisy quantum channel.
arXiv Detail & Related papers (2022-02-10T18:36:25Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Critical parametric quantum sensing [0.0]
We assess the metrological power of parametric Kerr resonators undergoing driven-dissipative transitions.
We show that the Heisenberg precision can be achieved with experimentally reachable parameters.
arXiv Detail & Related papers (2021-07-09T15:44:26Z) - Experimental Adiabatic Quantum Metrology with the Heisenberg scaling [21.42706958416718]
We propose an adiabatic scheme on a perturbed Ising spin model with the first order quantum phase transition.
We experimentally implement the adiabatic scheme on the nuclear magnetic resonance and show that the achieved precision attains the Heisenberg scaling.
arXiv Detail & Related papers (2021-02-14T03:08:54Z) - Entanglement Enhanced Estimation of a Parameter Embedded in Multiple
Phases [1.0828616610785522]
Quantum-enhanced sensing promises to improve the performance of sensing tasks using non-classical probes and measurements.
We propose a distributed distributed sensing framework that uses an entangled quantum probe to estimate a scene- parameter encoded within an array of phases.
We apply our framework to examples as diverse as radio-frequency phased-array directional radar, beam-displacement tracking for atomic-force microscopy, and fiber-based temperature gradiometry.
arXiv Detail & Related papers (2020-04-08T17:59:33Z) - In and out of equilibrium quantum metrology with mean-field quantum
criticality [68.8204255655161]
We study the influence that collective transition phenomena have on quantum metrological protocols.
The single spherical quantum spin (SQS) serves as stereotypical toy model that allows analytical insights on a mean-field level.
arXiv Detail & Related papers (2020-01-09T19:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.