論文の概要: Responsible Task Automation: Empowering Large Language Models as
Responsible Task Automators
- arxiv url: http://arxiv.org/abs/2306.01242v1
- Date: Fri, 2 Jun 2023 02:42:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-05 17:05:06.998134
- Title: Responsible Task Automation: Empowering Large Language Models as
Responsible Task Automators
- Title(参考訳): 責任のあるタスク自動化:責任のあるタスク自動化として大きな言語モデルを活用する
- Authors: Zhizheng Zhang, Xiaoyi Zhang, Wenxuan Xie, Yan Lu
- Abstract要約: 大規模言語モデル(LLM)は、ユーザ命令に従ってタスクを自動補完する有望な可能性を示している。
大きな疑問が浮かび上がってくる。人間がタスクを自動化するのを助けるとき、機械はどうやって責任を持って振る舞うことができるのか?
我々は、責任あるタスク自動化(Responsible Task Automation, ResponsibleTA)を、LCMベースのコーディネータとタスク自動化の実行者との間の責任ある協調を促進するための基本的なフレームワークとして提示する。
- 参考スコア(独自算出の注目度): 27.574510923325505
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recent success of Large Language Models (LLMs) signifies an impressive
stride towards artificial general intelligence. They have shown a promising
prospect in automatically completing tasks upon user instructions, functioning
as brain-like coordinators. The associated risks will be revealed as we
delegate an increasing number of tasks to machines for automated completion. A
big question emerges: how can we make machines behave responsibly when helping
humans automate tasks as personal copilots? In this paper, we explore this
question in depth from the perspectives of feasibility, completeness and
security. In specific, we present Responsible Task Automation (ResponsibleTA)
as a fundamental framework to facilitate responsible collaboration between
LLM-based coordinators and executors for task automation with three empowered
capabilities: 1) predicting the feasibility of the commands for executors; 2)
verifying the completeness of executors; 3) enhancing the security (e.g., the
protection of users' privacy). We further propose and compare two paradigms for
implementing the first two capabilities. One is to leverage the generic
knowledge of LLMs themselves via prompt engineering while the other is to adopt
domain-specific learnable models. Moreover, we introduce a local memory
mechanism for achieving the third capability. We evaluate our proposed
ResponsibleTA on UI task automation and hope it could bring more attentions to
ensuring LLMs more responsible in diverse scenarios. The research project
homepage is at
https://task-automation-research.github.io/responsible_task_automation.
- Abstract(参考訳): 最近のLarge Language Models(LLMs)の成功は、人工知能への印象的な一歩である。
彼らは、ユーザーの指示に従って自動的にタスクを完了し、脳のようなコーディネーターとして機能する有望な可能性を示した。
自動化された完了のために、より多くのタスクをマシンに委譲すると、関連するリスクが明らかになる。
大きな疑問が浮かび上がってくる。人間がタスクを自動化するのを助けるとき、機械はどうやって責任を持って振る舞うのか?
本稿では,実現可能性,完全性,セキュリティの観点から,この問題を深く考察する。
具体的には、llmベースのコーディネータとタスク自動化のエグゼキュータ間の責任あるコラボレーションを促進するための基本的なフレームワークとして、責任あるタスク自動化(responsibleta)を提示します。
1) 執行人に対する命令の実現可能性の予測
2 執行人の完全性を検証すること。
3) セキュリティの強化(ユーザのプライバシ保護など)。
我々はさらに,最初の2つの機能を実装するための2つのパラダイムを提案し,比較する。
ひとつはプロンプトエンジニアリングを通じてllms自体の一般的な知識を活用すること、もうひとつはドメイン固有の学習可能なモデルを採用することだ。
さらに,第3の能力を実現するためのローカルメモリ機構を導入する。
提案するuiタスクの自動化に関する責任を評価し、多様なシナリオにおいてllmがより責任を負うようになることを願っています。
研究プロジェクトのホームページはhttps://task-automation-research.github.io/responsible_task_automationにある。
関連論文リスト
- Agent S: An Open Agentic Framework that Uses Computers Like a Human [31.16046798529319]
我々は、GUI(Graphical User Interface)を通じてコンピュータとの自律的なインタラクションを可能にするオープンエージェントフレームワークであるAgent Sを提案する。
Agent Sは、ドメイン固有の知識の取得、長いタスクの水平線の計画、動的で一様でないインターフェイスの処理という、コンピュータタスクの自動化における3つの重要な課題に対処することを目指している。
論文 参考訳(メタデータ) (2024-10-10T17:43:51Z) - WorkArena++: Towards Compositional Planning and Reasoning-based Common Knowledge Work Tasks [85.95607119635102]
大型言語モデル(LLM)は人間のような知性を模倣することができる。
WorkArena++は、Webエージェントの計画、問題解決、論理的/論理的推論、検索、コンテキスト的理解能力を評価するように設計されている。
論文 参考訳(メタデータ) (2024-07-07T07:15:49Z) - ROS-LLM: A ROS framework for embodied AI with task feedback and structured reasoning [74.58666091522198]
非専門家による直感的なロボットプログラミングのためのフレームワークを提案する。
ロボットオペレーティングシステム(ROS)からの自然言語のプロンプトと文脈情報を活用する
我々のシステムは,大規模言語モデル (LLM) を統合し,非専門家がチャットインタフェースを通じてシステムにタスク要求を記述できるようにする。
論文 参考訳(メタデータ) (2024-06-28T08:28:38Z) - CAAP: Context-Aware Action Planning Prompting to Solve Computer Tasks with Front-End UI Only [21.054681757006385]
本稿では,スクリーンショット画像のみを通して環境を知覚するエージェントを提案する。
大規模言語モデルの推論能力を活用することで,大規模人間の実演データの必要性を解消する。
AgentはMiniWoB++の平均成功率は94.5%、WebShopの平均タスクスコアは62.3である。
論文 参考訳(メタデータ) (2024-06-11T05:21:20Z) - The Foundations of Computational Management: A Systematic Approach to
Task Automation for the Integration of Artificial Intelligence into Existing
Workflows [55.2480439325792]
本稿では,タスク自動化の体系的アプローチである計算管理を紹介する。
この記事では、ワークフロー内でAIを実装するプロセスを開始するための、ステップバイステップの手順を3つ紹介する。
論文 参考訳(メタデータ) (2024-02-07T01:45:14Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
タスク自動化における大規模言語モデル(LLM)の機能を評価するためのフレームワークであるTaskBenchを紹介する。
具体的には、タスクの分解、ツールの選択、パラメータ予測を評価する。
提案手法は, 自動構築と厳密な人的検証を組み合わせることで, 人的評価との整合性を確保する。
論文 参考訳(メタデータ) (2023-11-30T18:02:44Z) - HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging
Face [85.25054021362232]
大規模言語モデル(LLM)は、言語理解、生成、相互作用、推論において例外的な能力を示した。
LLMは、複雑なAIタスクを解決するために既存のAIモデルを管理するコントローラとして機能する可能性がある。
本稿では,機械学習コミュニティのさまざまなAIモデルを接続するLLMエージェントであるHuggingGPTを紹介する。
論文 参考訳(メタデータ) (2023-03-30T17:48:28Z) - Induction and Exploitation of Subgoal Automata for Reinforcement
Learning [75.55324974788475]
本稿では,Regressed Learning (RL)タスクにおけるサブゴールの学習と活用のためのISAを提案する。
ISAは、タスクのサブゴールによってエッジがラベル付けされたオートマトンであるサブゴールオートマトンを誘導することで強化学習をインターリーブする。
サブゴールオートマトンはまた、タスクの完了を示す状態と、タスクが成功せずに完了したことを示す状態の2つの特別な状態で構成されている。
論文 参考訳(メタデータ) (2020-09-08T16:42:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。