Automatic Translation of Hate Speech to Non-hate Speech in Social Media
Texts
- URL: http://arxiv.org/abs/2306.01261v1
- Date: Fri, 2 Jun 2023 04:03:14 GMT
- Title: Automatic Translation of Hate Speech to Non-hate Speech in Social Media
Texts
- Authors: Yevhen Kostiuk and Atnafu Lambebo Tonja and Grigori Sidorov and Olga
Kolesnikova
- Abstract summary: We present a novel task of translating hate speech into non-hate speech text while preserving its meaning.
We provide a dataset and several baselines as a starting point for further research.
The aim of this study is to contribute to the development of more effective methods for reducing the spread of hate speech in online communities.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we investigate the issue of hate speech by presenting a novel
task of translating hate speech into non-hate speech text while preserving its
meaning. As a case study, we use Spanish texts. We provide a dataset and
several baselines as a starting point for further research in the task. We
evaluated our baseline results using multiple metrics, including BLEU scores.
The aim of this study is to contribute to the development of more effective
methods for reducing the spread of hate speech in online communities.
Related papers
- Exploiting Hatred by Targets for Hate Speech Detection on Vietnamese Social Media Texts [0.0]
We first introduce the ViTHSD - a targeted hate speech detection dataset for Vietnamese Social Media Texts.
The dataset contains 10K comments, each comment is labeled to specific targets with three levels: clean, offensive, and hate.
The inter-annotator agreement obtained from the dataset is 0.45 by Cohen's Kappa index, which is indicated as a moderate level.
arXiv Detail & Related papers (2024-04-30T04:16:55Z) - An Investigation of Large Language Models for Real-World Hate Speech
Detection [46.15140831710683]
A major limitation of existing methods is that hate speech detection is a highly contextual problem.
Recently, large language models (LLMs) have demonstrated state-of-the-art performance in several natural language tasks.
Our study reveals that a meticulously crafted reasoning prompt can effectively capture the context of hate speech.
arXiv Detail & Related papers (2024-01-07T00:39:33Z) - DisfluencyFixer: A tool to enhance Language Learning through Speech To
Speech Disfluency Correction [50.51901599433536]
DisfluencyFixer is a tool that performs speech-to-speech disfluency correction in English and Hindi.
Our proposed system removes disfluencies from input speech and returns fluent speech as output.
arXiv Detail & Related papers (2023-05-26T14:13:38Z) - CoSyn: Detecting Implicit Hate Speech in Online Conversations Using a
Context Synergized Hyperbolic Network [52.85130555886915]
CoSyn is a context-synergized neural network that explicitly incorporates user- and conversational context for detecting implicit hate speech in online conversations.
We show that CoSyn outperforms all our baselines in detecting implicit hate speech with absolute improvements in the range of 1.24% - 57.8%.
arXiv Detail & Related papers (2023-03-02T17:30:43Z) - Assessing the impact of contextual information in hate speech detection [0.48369513656026514]
We provide a novel corpus for contextualized hate speech detection based on user responses to news posts from media outlets on Twitter.
This corpus was collected in the Rioplatense dialectal variety of Spanish and focuses on hate speech associated with the COVID-19 pandemic.
arXiv Detail & Related papers (2022-10-02T09:04:47Z) - Deep Learning for Hate Speech Detection: A Comparative Study [54.42226495344908]
We present here a large-scale empirical comparison of deep and shallow hate-speech detection methods.
Our goal is to illuminate progress in the area, and identify strengths and weaknesses in the current state-of-the-art.
In doing so we aim to provide guidance as to the use of hate-speech detection in practice, quantify the state-of-the-art, and identify future research directions.
arXiv Detail & Related papers (2022-02-19T03:48:20Z) - Addressing the Challenges of Cross-Lingual Hate Speech Detection [115.1352779982269]
In this paper we focus on cross-lingual transfer learning to support hate speech detection in low-resource languages.
We leverage cross-lingual word embeddings to train our neural network systems on the source language and apply it to the target language.
We investigate the issue of label imbalance of hate speech datasets, since the high ratio of non-hate examples compared to hate examples often leads to low model performance.
arXiv Detail & Related papers (2022-01-15T20:48:14Z) - Detection of Hate Speech using BERT and Hate Speech Word Embedding with
Deep Model [0.5801044612920815]
This paper investigates the feasibility of leveraging domain-specific word embedding in Bidirectional LSTM based deep model to automatically detect/classify hate speech.
The experiments showed that domainspecific word embedding with the Bidirectional LSTM based deep model achieved a 93% f1-score while BERT achieved up to 96% f1-score on a combined balanced dataset from available hate speech datasets.
arXiv Detail & Related papers (2021-11-02T11:42:54Z) - Latent Hatred: A Benchmark for Understanding Implicit Hate Speech [22.420275418616242]
This work introduces a theoretically-justified taxonomy of implicit hate speech and a benchmark corpus with fine-grained labels for each message.
We present systematic analyses of our dataset using contemporary baselines to detect and explain implicit hate speech.
arXiv Detail & Related papers (2021-09-11T16:52:56Z) - DeepHate: Hate Speech Detection via Multi-Faceted Text Representations [8.192671048046687]
DeepHate is a novel deep learning model that combines multi-faceted text representations such as word embeddings, sentiments, and topical information.
We conduct extensive experiments and evaluate DeepHate on three large publicly available real-world datasets.
arXiv Detail & Related papers (2021-03-14T16:11:30Z) - Racism is a Virus: Anti-Asian Hate and Counterspeech in Social Media
during the COVID-19 Crisis [51.39895377836919]
COVID-19 has sparked racism and hate on social media targeted towards Asian communities.
We study the evolution and spread of anti-Asian hate speech through the lens of Twitter.
We create COVID-HATE, the largest dataset of anti-Asian hate and counterspeech spanning 14 months.
arXiv Detail & Related papers (2020-05-25T21:58:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.