論文の概要: NNMobile-Net: Rethinking CNN Design for Deep Learning-Based Retinopathy
Research
- arxiv url: http://arxiv.org/abs/2306.01289v1
- Date: Fri, 2 Jun 2023 06:15:36 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-05 16:32:08.224659
- Title: NNMobile-Net: Rethinking CNN Design for Deep Learning-Based Retinopathy
Research
- Title(参考訳): nnmobile-net: 深層学習型網膜症研究のためのcnn設計再考
- Authors: Wenhui Zhu, Peijie Qiu, Natasha Lepore, Oana M. Dumitrascu, and Yalin
Wang
- Abstract要約: 網膜疾患に対するNon-MobileNet(Non-MobileNet)を提案する。
我々の研究は、ディープラーニングアーキテクチャ設計と高度な網膜症研究に関する新たな洞察を提供するかもしれない。
- 参考スコア(独自算出の注目度): 2.952111139469156
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Retinal diseases (RD) are the leading cause of severe vision loss or
blindness. Deep learning-based automated tools play an indispensable role in
assisting clinicians in diagnosing and monitoring RD in modern medicine.
Recently, an increasing number of works in this field have taken advantage of
Vision Transformer to achieve state-of-the-art performance with more parameters
and higher model complexity compared to Convolutional Neural Networks (CNNs).
Such sophisticated and task-specific model designs, however, are prone to be
overfitting and hinder their generalizability. In this work, we argue that a
channel-aware and well-calibrated CNN model may overcome these problems. To
this end, we empirically studied CNN's macro and micro designs and its training
strategies. Based on the investigation, we proposed a no-new-MobleNet
(nn-MobileNet) developed for retinal diseases. In our experiments, our generic,
simple and efficient model superseded most current state-of-the-art methods on
four public datasets for multiple tasks, including diabetic retinopathy
grading, fundus multi-disease detection, and diabetic macular edema
classification. Our work may provide novel insights into deep learning
architecture design and advance retinopathy research.
- Abstract(参考訳): 網膜疾患(rd)は重度の視力喪失や盲目の主な原因である。
ディープラーニングに基づく自動化ツールは、現代医学におけるRDの診断とモニタリングにおいて、臨床医を支援する上で不可欠である。
近年では,畳み込みニューラルネットワーク(cnns)と比較して,パラメータやモデルの複雑さが高まり,最先端のパフォーマンスを実現するために視覚トランスフォーマ(vision transformer)を利用した研究が増えている。
しかし、そのような高度でタスク固有のモデル設計は、過度に適合し、その一般化性を阻害する傾向がある。
本稿では,チャネル認識とcnnモデルがこれらの問題を克服する可能性について論じる。
そこで我々はCNNのマクロ・マイクロデザインとそのトレーニング戦略を実証的に研究した。
本研究は,網膜疾患に対する新しいNon-MobileNet (Non-MobileNet) を提案する。
実験では, 糖尿病網膜症評価, 眼底多病症検出, 糖尿病黄斑浮腫分類の4つの課題に対して, 最新の4つの公開データセットで, 汎用的, 簡便で効率的なモデルを構築した。
我々の研究は、深層学習アーキテクチャ設計と先行網膜症研究に新たな洞察を与えるかもしれない。
関連論文リスト
- Enhancing Diabetic Retinopathy Detection with CNN-Based Models: A Comparative Study of UNET and Stacked UNET Architectures [0.0]
糖尿病網膜症DRは糖尿病の重篤な合併症である。損傷または異常な血管は視力喪失を引き起こす可能性がある。
糖尿病患者の大量スクリーニングの必要性は、コンピュータ支援によるDRの完全自動診断への関心を生んでいる。
ディープラーニングフレームワーク、特に畳み込みニューラルネットワークCNNは、網膜画像を分析してDRを検出することに非常に興味を持ち、約束している。
論文 参考訳(メタデータ) (2024-11-02T14:02:45Z) - Explainability of Deep Neural Networks for Brain Tumor Detection [0.0828720658988688]
我々は、実世界の医療データに基づいて、様々なモデルの性能を評価するために、説明可能なAI(XAI)技術を適用した。
より浅いアーキテクチャを持つCNNは、小さなデータセットに対してより効果的であり、医療的な意思決定をサポートすることができる。
論文 参考訳(メタデータ) (2024-10-10T05:01:21Z) - Synthetic Trajectory Generation Through Convolutional Neural Networks [6.717469146587211]
RTCT(Reversible Trajectory-to-CNN Transformation)を導入する。
RTCTは、軌跡をCNNベースのモデルに適したフォーマットに適合させる。
我々は、RNNに基づく軌道GANに対して、その性能を評価する。
論文 参考訳(メタデータ) (2024-07-24T02:16:52Z) - A Comparative Study of CNN, ResNet, and Vision Transformers for Multi-Classification of Chest Diseases [0.0]
ビジョントランスフォーマー(ViT)は、そのスケーラビリティと大量のデータを処理する能力のため、強力なツールである。
NIH Chest X-rayデータセットを用いて、ImageNetで事前トレーニングされたモデルと、スクラッチからトレーニングされたモデルである2種類のViTモデルを微調整した。
本研究は,14の異なる疾患の多ラベル分類において,これらのモデルの性能を評価するものである。
論文 参考訳(メタデータ) (2024-05-31T23:56:42Z) - Unveiling the Unseen: Identifiable Clusters in Trained Depthwise
Convolutional Kernels [56.69755544814834]
深部分離型畳み込みニューラルネットワーク(DS-CNN)の最近の進歩は、新しいアーキテクチャをもたらす。
本稿では,DS-CNNアーキテクチャのもう一つの顕著な特性を明らかにする。
論文 参考訳(メタデータ) (2024-01-25T19:05:53Z) - InternImage: Exploring Large-Scale Vision Foundation Models with
Deformable Convolutions [95.94629864981091]
この研究は、パラメータの増加やViTsのようなトレーニングデータから得られるインターンイメージと呼ばれる、CNNベースの新しい大規模ファンデーションモデルを提案する。
提案されたInternImageは、従来のCNNの厳格な帰納バイアスを低減し、ViTのような大規模データから、より強く堅牢なパターンを学習できるようにする。
論文 参考訳(メタデータ) (2022-11-10T18:59:04Z) - Data-Efficient Vision Transformers for Multi-Label Disease
Classification on Chest Radiographs [55.78588835407174]
視覚変換器(ViT)は一般的な画像の分類性能が高いにもかかわらず、このタスクには適用されていない。
ViTは、畳み込みではなくパッチベースの自己アテンションに依存しており、CNNとは対照的に、ローカル接続に関する事前の知識は存在しない。
以上の結果から,ViTとCNNのパフォーマンスはViTの利点に匹敵するものの,DeiTsはトレーニング用に適度に大規模なデータセットが利用可能であれば,前者よりも優れることがわかった。
論文 参考訳(メタデータ) (2022-08-17T09:07:45Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - Scopeformer: n-CNN-ViT Hybrid Model for Intracranial Hemorrhage
Classification [0.0]
本稿では、視覚変換器(ViT)モデルを改善するために、畳み込みニューラルネットワーク(CNN)のアンサンブルからなる特徴生成器を提案する。
複数のXception CNNを用いて抽出した特徴マップを徐々に積み重ねることで、VTモデルのための特徴量豊富な入力を開発することができることを示す。
論文 参考訳(メタデータ) (2021-07-07T20:20:24Z) - RetiNerveNet: Using Recursive Deep Learning to Estimate Pointwise 24-2
Visual Field Data based on Retinal Structure [109.33721060718392]
緑内障は 世界でも 不可逆的な盲目の 主要な原因です 7000万人以上が 影響を受けています
The Standard Automated Perimetry (SAP) test's innate difficulty and its high test-retest variable, we propose the RetiNerveNet。
論文 参考訳(メタデータ) (2020-10-15T03:09:08Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
我々は,従来のトランスファー学習の改良にマルチソース・トランスファー・ラーニングを応用して,CTスキャンによる新型コロナウイルスの分類を提案する。
マルチソースファインチューニングアプローチでは、ImageNetで微調整されたベースラインモデルよりも優れています。
我々の最高のパフォーマンスモデルは、0.893の精度と0.897のリコールスコアを達成でき、ベースラインのリコールスコアを9.3%上回った。
論文 参考訳(メタデータ) (2020-09-22T11:53:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。