論文の概要: Synthetic Trajectory Generation Through Convolutional Neural Networks
- arxiv url: http://arxiv.org/abs/2407.16938v1
- Date: Wed, 24 Jul 2024 02:16:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-25 15:02:58.582030
- Title: Synthetic Trajectory Generation Through Convolutional Neural Networks
- Title(参考訳): 畳み込みニューラルネットワークによる合成軌道生成
- Authors: Jesse Merhi, Erik Buchholz, Salil S. Kanhere,
- Abstract要約: RTCT(Reversible Trajectory-to-CNN Transformation)を導入する。
RTCTは、軌跡をCNNベースのモデルに適したフォーマットに適合させる。
我々は、RNNに基づく軌道GANに対して、その性能を評価する。
- 参考スコア(独自算出の注目度): 6.717469146587211
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Location trajectories provide valuable insights for applications from urban planning to pandemic control. However, mobility data can also reveal sensitive information about individuals, such as political opinions, religious beliefs, or sexual orientations. Existing privacy-preserving approaches for publishing this data face a significant utility-privacy trade-off. Releasing synthetic trajectory data generated through deep learning offers a promising solution. Due to the trajectories' sequential nature, most existing models are based on recurrent neural networks (RNNs). However, research in generative adversarial networks (GANs) largely employs convolutional neural networks (CNNs) for image generation. This discrepancy raises the question of whether advances in computer vision can be applied to trajectory generation. In this work, we introduce a Reversible Trajectory-to-CNN Transformation (RTCT) that adapts trajectories into a format suitable for CNN-based models. We integrated this transformation with the well-known DCGAN in a proof-of-concept (PoC) and evaluated its performance against an RNN-based trajectory GAN using four metrics across two datasets. The PoC was superior in capturing spatial distributions compared to the RNN model but had difficulty replicating sequential and temporal properties. Although the PoC's utility is not sufficient for practical applications, the results demonstrate the transformation's potential to facilitate the use of CNNs for trajectory generation, opening up avenues for future research. To support continued research, all source code has been made available under an open-source license.
- Abstract(参考訳): ロケーション・トラジェクトリーは、都市計画からパンデミックコントロールへの応用に貴重な洞察を提供する。
しかし、モビリティデータは、政治的意見、宗教的信念、性的指向などの個人に関する機密情報を明らかにすることもできる。
このデータを公開するための既存のプライバシ保護アプローチは、大きなユーティリティプライバシトレードオフに直面している。
ディープラーニングによって生成された合成軌道データのリースは、有望なソリューションを提供する。
軌道のシーケンシャルな性質のため、既存のモデルのほとんどはリカレントニューラルネットワーク(RNN)に基づいている。
しかし、GAN(Generative Adversarial Network)の研究は主に画像生成に畳み込みニューラルネットワーク(CNN)を使用している。
この矛盾は、コンピュータビジョンの進歩が軌道生成に応用できるかどうかという問題を提起する。
本研究では, トラジェクトリをCNNモデルに適したフォーマットに適応させるRTCT(Reversible Trajectory-to-CNN Transformation)を提案する。
我々は、この変換をよく知られたDCGANと概念実証(PoC)に統合し、2つのデータセットにまたがる4つのメトリクスを用いて、RNNベースの軌道GANに対してその性能を評価した。
PoCは、RNNモデルと比較して空間分布を捉えるのに優れていたが、逐次的および時間的特性の複製が困難であった。
The PoC's utility is not enough for practical applications, the results showed the transformation's potential to help the use of CNNs for trajectory generation, open up paths for future research。
継続的な研究をサポートするため、すべてのソースコードはオープンソースライセンスの下で利用可能になっている。
関連論文リスト
- U-KAN Makes Strong Backbone for Medical Image Segmentation and Generation [48.40120035775506]
Kolmogorov-Arnold Networks (KAN)は、非線形学習可能なアクティベーション関数のスタックを通じてニューラルネットワーク学習を再構築する。
トークン化中間表現であるU-KAN上に専用kan層を統合することにより,確立したU-Netパイプラインを検証,修正,再設計する。
さらに、拡散モデルにおける代替U-Netノイズ予測器としてのU-KANの可能性を探り、タスク指向モデルアーキテクチャの生成にその適用性を実証した。
論文 参考訳(メタデータ) (2024-06-05T04:13:03Z) - Use of Parallel Explanatory Models to Enhance Transparency of Neural Network Configurations for Cell Degradation Detection [18.214293024118145]
我々は,ニューラルネットワークの内部動作を照らし,理解するための並列モデルを構築している。
RNNの各層が入力分布を変換して検出精度を高める方法を示す。
同時に、精度の向上を制限するために作用する副作用も発見する。
論文 参考訳(メタデータ) (2024-04-17T12:22:54Z) - Topological Representations of Heterogeneous Learning Dynamics of Recurrent Spiking Neural Networks [16.60622265961373]
スパイキングニューラルネットワーク(SNN)は神経科学と人工知能において重要なパラダイムとなっている。
近年,深層ニューラルネットワークのネットワーク表現について研究が進められている。
論文 参考訳(メタデータ) (2024-03-19T05:37:26Z) - Explicit Context Integrated Recurrent Neural Network for Sensor Data
Applications [0.0]
Context Integrated RNN (CiRNN) は、コンテキスト特徴の形式で表現された明示的なコンテキストの統合を可能にする。
実験では、最先端モデルよりもそれぞれ39%と87%の改善が見られた。
論文 参考訳(メタデータ) (2023-01-12T13:58:56Z) - Invertible Neural Networks for Graph Prediction [22.140275054568985]
本研究では,ディープ・インバーチブル・ニューラルネットワークを用いた条件生成について述べる。
私たちの目標は,前処理と後処理の予測と生成を同時に行うことにあるので,エンドツーエンドのトレーニングアプローチを採用しています。
論文 参考訳(メタデータ) (2022-06-02T17:28:33Z) - CRNNTL: convolutional recurrent neural network and transfer learning for
QSAR modelling [4.090810719630087]
本稿では,QSARモデリングのための畳み込みリカレントニューラルネットワークと伝達学習(CRNNTL)を提案する。
我々の戦略は、特徴抽出のための畳み込みニューラルネットワークと繰り返しニューラルネットワークの両方の利点と、データ拡張手法の利点を生かしている。
論文 参考訳(メタデータ) (2021-09-07T20:04:55Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
歴史的文脈からビジュアルダイナミクスを学習するための新しいリカレントネットワークであるPredRNNを紹介する。
本手法は,3つの標準データセット上で高い競争結果が得られることを示す。
論文 参考訳(メタデータ) (2021-03-17T08:28:30Z) - Overcoming Catastrophic Forgetting in Graph Neural Networks [50.900153089330175]
破滅的な忘れは、ニューラルネットワークが新しいタスクを学ぶ前に学んだ知識を「忘れる」傾向を指します。
本稿では,この問題を克服し,グラフニューラルネットワーク(GNN)における継続学習を強化するための新しいスキームを提案する。
私たちのアプローチの中心には、トポロジ認識重量保存(TWP)と呼ばれる汎用モジュールがあります。
論文 参考訳(メタデータ) (2020-12-10T22:30:25Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z) - Stochastic Graph Neural Networks [123.39024384275054]
グラフニューラルネットワーク(GNN)は、分散エージェント調整、制御、計画に応用したグラフデータの非線形表現をモデル化する。
現在のGNNアーキテクチャは理想的なシナリオを前提として,環境やヒューマンファクタ,あるいは外部攻撃によるリンク変動を無視している。
これらの状況において、GNNは、トポロジカルなランダム性を考慮していない場合、その分散タスクに対処することができない。
論文 参考訳(メタデータ) (2020-06-04T08:00:00Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。