論文の概要: Light Coreference Resolution for Russian with Hierarchical Discourse
Features
- arxiv url: http://arxiv.org/abs/2306.01465v1
- Date: Fri, 2 Jun 2023 11:41:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-05 15:27:31.717416
- Title: Light Coreference Resolution for Russian with Hierarchical Discourse
Features
- Title(参考訳): 階層的談話特徴を有するロシア語の光同時参照分解
- Authors: Elena Chistova and Ivan Smirnov
- Abstract要約: ニューラルコア参照解決モデルに修辞情報を組み込んだ新しいアプローチを提案する。
部分的に微調整された多言語エンティティ認識言語モデルLUKEを用いて、エンドツーエンドのスパンベースコア参照リゾルバを実装した。
言及間の修辞的距離を用いた最良のモデルでは、開発セット(74.6% F1)で1位、共有タスク(73.3% F1)で2位にランクされている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Coreference resolution is the task of identifying and grouping mentions
referring to the same real-world entity. Previous neural models have mainly
focused on learning span representations and pairwise scores for coreference
decisions. However, current methods do not explicitly capture the referential
choice in the hierarchical discourse, an important factor in coreference
resolution. In this study, we propose a new approach that incorporates
rhetorical information into neural coreference resolution models. We collect
rhetorical features from automated discourse parses and examine their impact.
As a base model, we implement an end-to-end span-based coreference resolver
using a partially fine-tuned multilingual entity-aware language model LUKE. We
evaluate our method on the RuCoCo-23 Shared Task for coreference resolution in
Russian. Our best model employing rhetorical distance between mentions has
ranked 1st on the development set (74.6% F1) and 2nd on the test set (73.3% F1)
of the Shared Task. We hope that our work will inspire further research on
incorporating discourse information in neural coreference resolution models.
- Abstract(参考訳): コリファレンス解決(coreference resolution)は、同じ現実世界のエンティティを参照する言及を識別しグループ化するタスクである。
従来のニューラルモデルは主に、コア参照決定のためのスパン表現とペアワイズスコアの学習に重点を置いてきた。
しかし、現在の手法は、コア参照解決の重要な要素である階層的談話における参照選択を明示的に捉えていない。
本研究では,神経共参照分解モデルに修辞的情報を組み込んだ新しいアプローチを提案する。
自動談話解析から修辞的特徴を収集し,その影響について検討する。
ベースモデルとして、部分的な微調整された多言語エンティティ対応言語モデルlukeを用いて、エンドツーエンドのスパンベースのコリファレンスリゾルバを実装した。
rucoco-23共有タスクにおけるロシア語共参照解決手法の評価を行った。
言及間の修辞距離を用いた最良のモデルは、開発セット(74.6%f1)、テストセット(73.3%f1)で第1位である。
我々の研究は、ニューラルコア参照解決モデルに談話情報を統合するためのさらなる研究を促すことを願っている。
関連論文リスト
- Exploring Multiple Strategies to Improve Multilingual Coreference Resolution in CorefUD [0.0]
本稿では,エンド・ツー・エンドのニューラル・コアス・リゾリューションシステムについて述べる。
まず、モノリンガルとクロスリンガルのバリエーションを含む強力なベースラインモデルを構築します。
多様な言語文脈における性能向上のためのいくつかの拡張を提案する。
論文 参考訳(メタデータ) (2024-08-29T20:27:05Z) - Empirical Study of Zero-Shot NER with ChatGPT [19.534329209433626]
大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて強力な能力を示した。
本研究はゼロショット情報抽出におけるLLM性能の探索に焦点をあてる。
記号的推論と算術的推論におけるLLMの顕著な推論能力に着想を得て, 代表的な推論手法をNERに適用する。
論文 参考訳(メタデータ) (2023-10-16T03:40:03Z) - Analyzing Vietnamese Legal Questions Using Deep Neural Networks with
Biaffine Classifiers [3.116035935327534]
我々は深層ニューラルネットワークを用いてベトナムの法的問題から重要な情報を抽出することを提案する。
自然言語で法的疑問が与えられた場合、その疑問に答えるために必要な情報を含む全てのセグメントを抽出することが目的である。
論文 参考訳(メタデータ) (2023-04-27T18:19:24Z) - Ensemble Transfer Learning for Multilingual Coreference Resolution [60.409789753164944]
非英語で作業する場合に頻繁に発生する問題は、注釈付きトレーニングデータの不足である。
我々は,様々なトランスファー学習技術を組み合わせた,シンプルだが効果的なアンサンブルベースのフレームワークを設計する。
また、ウィキペディアアンカーテキストを利用して、コア参照解決モデルをブートストラップする低コストのTL手法を提案する。
論文 参考訳(メタデータ) (2023-01-22T18:22:55Z) - Hybrid Rule-Neural Coreference Resolution System based on Actor-Critic
Learning [53.73316523766183]
コアレゾリューションシステムは2つの主要なタスクに取り組む必要がある。
ひとつのタスクは、潜在的な言及のすべてを検出することであり、もう1つは、可能な言及ごとに前者のリンクを学習することである。
本稿では,アクター・クリティカル・ラーニングに基づく複合ルール・ニューラル・コア参照解決システムを提案する。
論文 参考訳(メタデータ) (2022-12-20T08:55:47Z) - Neural Coreference Resolution based on Reinforcement Learning [53.73316523766183]
コアレゾリューションシステムは2つのサブタスクを解決する必要がある。
ひとつのタスクは、潜在的な言及のすべてを検出することであり、もう1つは、可能な言及ごとに前者のリンクを学習することである。
本稿では,アクターをベースとした強化学習型ニューラルコア参照分解システムを提案する。
論文 参考訳(メタデータ) (2022-12-18T07:36:35Z) - IRRGN: An Implicit Relational Reasoning Graph Network for Multi-turn
Response Selection [4.471148909362883]
Graph Networkへのインプシット推論は、発話間の暗黙的な抽出と、発話とオプションの抽出を目的としている。
モデルは、初めて MuTual データセットで人のパフォーマンスを上回ります。
論文 参考訳(メタデータ) (2022-12-01T13:17:25Z) - Visualizing the Relationship Between Encoded Linguistic Information and
Task Performance [53.223789395577796]
本稿では,Pareto Optimalityの観点から,符号化言語情報とタスクパフォーマンスの動的関係について検討する。
我々は、機械翻訳と言語モデリングという2つの一般的なNLPタスクの実験を行い、様々な言語情報とタスクパフォーマンスの関係について検討する。
実験結果から,NLPタスクには構文情報が有用であるのに対して,より構文情報の符号化が必ずしも優れたパフォーマンスをもたらすとは限らないことが示唆された。
論文 参考訳(メタデータ) (2022-03-29T19:03:10Z) - Exploring Multi-Modal Representations for Ambiguity Detection &
Coreference Resolution in the SIMMC 2.0 Challenge [60.616313552585645]
会話型AIにおける効果的なあいまいさ検出と参照解決のためのモデルを提案する。
具体的には,TOD-BERTとLXMERTをベースとしたモデルを用いて,多数のベースラインと比較し,アブレーション実験を行う。
以上の結果から,(1)言語モデルでは曖昧さを検出するためにデータの相関を活用でき,(2)言語モデルではビジョンコンポーネントの必要性を回避できることがわかった。
論文 参考訳(メタデータ) (2022-02-25T12:10:02Z) - Probing Task-Oriented Dialogue Representation from Language Models [106.02947285212132]
本稿では,タスク指向対話タスクにおいて,どのモデルが本質的に最も有意義な表現を担っているかを明らかにするために,事前学習された言語モデルについて検討する。
我々は、アノテートラベルを教師付き方法で固定された事前学習言語モデルの上に、分類器プローブとしてフィードフォワード層を微調整する。
論文 参考訳(メタデータ) (2020-10-26T21:34:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。