論文の概要: SourceP: Smart Ponzi Schemes Detection on Ethereum Using Pre-training
Model with Data Flow
- arxiv url: http://arxiv.org/abs/2306.01665v1
- Date: Fri, 2 Jun 2023 16:40:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-05 14:11:32.489981
- Title: SourceP: Smart Ponzi Schemes Detection on Ethereum Using Pre-training
Model with Data Flow
- Title(参考訳): SourceP: データフローによる事前学習モデルを用いたEthereum上のスマートポンジ検出
- Authors: Pengcheng Lu, Liang Cai, and Keting Yin
- Abstract要約: SourcePは、事前トレーニングモデルとデータフローを使用して、プラットフォーム上のスマートPonziスキームを検出する方法である。
まず、スマートコントラクトのソースコードをデータフローグラフに変換し、学習コード表現に基づく事前学習モデルを導入し、分類モデルを構築する。
実験結果から、SourceP 87.2%のリコールが達成され、90.7%のFスコアがデータセット内のスマートPonziスキームを検出する。
- 参考スコア(独自算出の注目度): 1.0323063834827415
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As blockchain technology becomes more and more popular, a typical financial
scam, the Ponzi scheme, has also emerged in the blockchain platform Ethereum.
This Ponzi scheme deployed through smart contracts, also known as the smart
Ponzi scheme, has caused a lot of economic losses and negative impacts.
Existing methods for detecting smart Ponzi schemes on Ethereum mainly rely on
bytecode features, opcode features, account features, and transaction behavior
features of smart contracts, and such methods lack interpretability and
sustainability. In this paper, we propose SourceP, a method to detect smart
Ponzi schemes on the Ethereum platform using pre-training models and data flow,
which only requires using the source code of smart contracts as features to
explore the possibility of detecting smart Ponzi schemes from another
direction. SourceP reduces the difficulty of data acquisition and feature
extraction of existing detection methods while increasing the interpretability
of the model. Specifically, we first convert the source code of a smart
contract into a data flow graph and then introduce a pre-training model based
on learning code representations to build a classification model to identify
Ponzi schemes in smart contracts. The experimental results show that SourceP
achieves 87.2\% recall and 90.7\% F-score for detecting smart Ponzi schemes
within Ethereum's smart contract dataset, outperforming state-of-the-art
methods in terms of performance and sustainability. We also demonstrate through
additional experiments that pre-training models and data flow play an important
contribution to SourceP, as well as proving that SourceP has a good
generalization ability.
- Abstract(参考訳): ブロックチェーン技術がますます普及するにつれて、一般的な金融詐欺であるPonziスキームもブロックチェーンプラットフォームEthereumに登場している。
スマートコントラクトを通じて展開されるこのPonziスキームは、スマートPonziスキームとしても知られ、多くの経済的損失と負の影響を引き起こしている。
Ethereum上のスマートPonziスキームを検出する既存の方法は、主にバイトコード機能、オプコード機能、アカウント機能、スマートコントラクトのトランザクション動作機能に依存しており、解釈可能性や持続可能性に欠ける。
本稿では、前訓練モデルとデータフローを使用してethereumプラットフォーム上でスマートポンジスキームを検出する方法であるsourcepを提案し、smart contractsのソースコードを機能として使用することで、別の方向からスマートポンジスキームを検出する可能性を探究する。
sourcepは、モデルの解釈性を高めながら、データ取得の難しさと既存の検出方法の特徴抽出を削減します。
具体的には、まずスマートコントラクトのソースコードをデータフローグラフに変換し、次に学習コード表現に基づく事前トレーニングモデルを導入し、スマートコントラクト内のポンジスキームを識別するための分類モデルを構築する。
実験の結果, SourceP は Ethereum のスマートコントラクトデータセット内のスマート Ponzi スキームの検出において,87.2\% のリコールと90.7\% のFスコアを達成した。
我々はまた、事前学習モデルとデータフローがSourcePに重要な貢献を果たすこと、およびSourcePが優れた一般化能力を持っていることを証明する追加の実験を通して実証する。
関連論文リスト
- Semantic Sleuth: Identifying Ponzi Contracts via Large Language Models [10.770371122781956]
PonziSleuthは、Ponziスマートコントラクトを検出する最初のLCM駆動のアプローチである。
大規模なデータ要求なしに、同等で、しばしば優れたパフォーマンスを提供する。
実世界検出において、PonziSleuthは2024年3月にEtherscanによって承認された4,597件の契約から15件の新しいポンツィ計画の特定に成功した。
論文 参考訳(メタデータ) (2024-11-12T02:54:59Z) - Leveraging Skills from Unlabeled Prior Data for Efficient Online Exploration [54.8229698058649]
本研究では,未ラベルの事前軌跡データを用いて効率的な探索戦略を学習する方法について検討する。
我々の手法 SUPE (Skills from Unlabeled Prior Data for Exploration) は、これらのアイデアの慎重な組み合わせがそれらの利点を兼ね備えていることを示す。
実験により,SUPEが従来の戦略を確実に上回り,長い水平・スパース・リワードタスクの一組の解決に成功したことを実証的に示す。
論文 参考訳(メタデータ) (2024-10-23T17:58:45Z) - Towards Effective Detection of Ponzi schemes on Ethereum with Contract Runtime Behavior Graph [17.79695486585971]
詐欺の一種であるポンツィスキームは、近年スマートコントラクトで発見され、巨額の損失をもたらした。
既存の検出手法は主にルールベースのアプローチと機械学習技術に焦点を当てている。
PonziGuardは,契約実行時の動作に基づく効率的なPonzi検出手法である。
論文 参考訳(メタデータ) (2024-06-03T01:17:48Z) - Improving the Accuracy of Transaction-Based Ponzi Detection on Ethereum [13.233535179219633]
昔ながらの詐欺であるPonziスキームが、ブロックチェーンで人気になった。
ほとんどのPonzi検出方法は、そのスマートコントラクトソースコードに基づいてPonziスキームを検出する。
我々は、マシンラーニングアルゴリズムが最大30%高いF1スコアを達成することができる85の新機能(22のアカウントベース、63の新しい時系列機能)を提案する。
論文 参考訳(メタデータ) (2023-08-31T01:54:31Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
本稿では,アダプティブサンプリングとアグリゲーションに基づくグラフニューラルネットワーク(ASA-GNN)を提案する。
ノイズの多いノードをフィルタリングし、不正なノードを補うために、隣のサンプリング戦略を実行する。
3つのファイナンシャルデータセットの実験により,提案手法のASA-GNNは最先端のデータセットよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-07-11T07:48:39Z) - Blockchain Large Language Models [65.7726590159576]
本稿では,異常なブロックチェーントランザクションを検出するための動的,リアルタイムなアプローチを提案する。
提案するツールであるBlockGPTは、ブロックチェーンアクティビティのトレース表現を生成し、大規模な言語モデルをスクラッチからトレーニングして、リアルタイム侵入検出システムとして機能させる。
論文 参考訳(メタデータ) (2023-04-25T11:56:18Z) - Explainable Ponzi Schemes Detection on Ethereum [1.3812010983144802]
ポンツィスキームは最も一般的な詐欺の一つである。
本稿では,実世界のスマートポンジ契約を検出する分類器を提案する。
優れた分類品質を保証し、AI技術を用いた分類への影響を調査する、小型で効果的な機能のセットを特定します。
論文 参考訳(メタデータ) (2023-01-12T08:38:23Z) - Sequential Information Design: Markov Persuasion Process and Its
Efficient Reinforcement Learning [156.5667417159582]
本稿では,逐次情報設計の新たなモデル,すなわちマルコフ説得過程(MPP)を提案する。
MPPのプランニングは、ミオピックレシーバーに同時に説得されるシグナルポリシーを見つけ、送信者の最適な長期累積ユーティリティを誘導する、というユニークな課題に直面している。
我々は,楽観主義と悲観主義の両原理の新たな組み合わせを特徴とする,実証可能な効率のよい非回帰学習アルゴリズム,Optimism-Pessimism Principle for Persuasion Process (OP4) を設計する。
論文 参考訳(メタデータ) (2022-02-22T05:41:43Z) - Data-driven Smart Ponzi Scheme Detection [11.467476506780969]
スマートPonziスキームは、スマートコントラクトアカウントと暗号通貨を使用してPonziスキームを実装する、新しいタイプの経済犯罪である。
本稿では,データ駆動型スマートPonziスキーム検出システムを提案する。
従来の手法と比較して、提案システムは非常に限定的な人間とコンピュータの相互作用を必要とする。
論文 参考訳(メタデータ) (2021-08-20T07:45:36Z) - Smart Contract Vulnerability Detection: From Pure Neural Network to
Interpretable Graph Feature and Expert Pattern Fusion [48.744359070088166]
従来のスマートコントラクトの脆弱性検出方法は、専門家の規則に大きく依存している。
最近のディープラーニングアプローチはこの問題を軽減するが、有用な専門家の知識をエンコードすることができない。
ソースコードから専門家パターンを抽出する自動ツールを開発する。
次に、深いグラフの特徴を抽出するために、コードをセマンティックグラフにキャストします。
論文 参考訳(メタデータ) (2021-06-17T07:12:13Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
既存の機械学習ベースの脆弱性検出方法は制限され、スマートコントラクトが脆弱かどうかのみ検査される。
スマートコントラクトのための初のDeep Neural Network(DNN)ベースの脆弱性検出フレームワークであるESCORTを提案する。
ESCORTは6種類の脆弱性に対して平均95%のF1スコアを達成し,検出時間は契約あたり0.02秒であることを示す。
論文 参考訳(メタデータ) (2021-03-23T15:04:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。