論文の概要: Semantic Sleuth: Identifying Ponzi Contracts via Large Language Models
- arxiv url: http://arxiv.org/abs/2411.07498v1
- Date: Tue, 12 Nov 2024 02:54:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-13 13:19:50.019521
- Title: Semantic Sleuth: Identifying Ponzi Contracts via Large Language Models
- Title(参考訳): セマンティックスルース:大規模言語モデルによるポンツィ契約の特定
- Authors: Cong Wu, Jing Chen, Ziwei Wang, Ruichao Liang, Ruiying Du,
- Abstract要約: PonziSleuthは、Ponziスマートコントラクトを検出する最初のLCM駆動のアプローチである。
大規模なデータ要求なしに、同等で、しばしば優れたパフォーマンスを提供する。
実世界検出において、PonziSleuthは2024年3月にEtherscanによって承認された4,597件の契約から15件の新しいポンツィ計画の特定に成功した。
- 参考スコア(独自算出の注目度): 10.770371122781956
- License:
- Abstract: Smart contracts, self-executing agreements directly encoded in code, are fundamental to blockchain technology, especially in decentralized finance (DeFi) and Web3. However, the rise of Ponzi schemes in smart contracts poses significant risks, leading to substantial financial losses and eroding trust in blockchain systems. Existing detection methods, such as PonziGuard, depend on large amounts of labeled data and struggle to identify unseen Ponzi schemes, limiting their reliability and generalizability. In contrast, we introduce PonziSleuth, the first LLM-driven approach for detecting Ponzi smart contracts, which requires no labeled training data. PonziSleuth utilizes advanced language understanding capabilities of LLMs to analyze smart contract source code through a novel two-step zero-shot chain-of-thought prompting technique. Our extensive evaluation on benchmark datasets and real-world contracts demonstrates that PonziSleuth delivers comparable, and often superior, performance without the extensive data requirements, achieving a balanced detection accuracy of 96.06% with GPT-3.5-turbo, 93.91% with LLAMA3, and 94.27% with Mistral. In real-world detection, PonziSleuth successfully identified 15 new Ponzi schemes from 4,597 contracts verified by Etherscan in March 2024, with a false negative rate of 0% and a false positive rate of 0.29%. These results highlight PonziSleuth's capability to detect diverse and novel Ponzi schemes, marking a significant advancement in leveraging LLMs for enhancing blockchain security and mitigating financial scams.
- Abstract(参考訳): コードで直接エンコードされた自己実行契約であるスマートコントラクトは、特に分散型金融(DeFi)とWeb3において、ブロックチェーン技術の基本である。
しかし、スマートコントラクトにおけるPonziスキームの台頭は大きなリスクをもたらし、大きな損失をもたらし、ブロックチェーンシステムへの信頼を損なう。
PonziGuardのような既存の検出手法は、大量のラベル付きデータに依存し、不明瞭なPonziスキームを特定するのに苦労し、信頼性と一般化性を制限する。
対照的にPonziSleuthは、ラベル付きトレーニングデータを必要としない、Ponziスマートコントラクトを検出する最初のLCM駆動型アプローチである。
PonziSleuthは、LLMの高度な言語理解機能を利用して、新しい2ステップのゼロショット・チェーン・オブ・シークレット・プロンプト技術により、スマートコントラクトのソースコードを分析する。
PonziSleuthは、GPT-3.5-turboで96.06%、LLAMA3で93.91%、Mistralで94.27%のバランスの取れた検出精度を実現している。
実世界の検出において、PonziSleuthは2024年3月にEtherscanが検証した4,597件の契約から15件の新しいPonziスキームを特定し、偽陰性率は0%、偽陽性率は0.29%とした。
これらの結果は、多種多様な新しいPonziスキームを検出するPonziSleuthの能力を浮き彫りにしており、LLMを活用してブロックチェーンのセキュリティを強化し、金融詐欺を軽減している。
関連論文リスト
- Towards Effective Detection of Ponzi schemes on Ethereum with Contract Runtime Behavior Graph [17.79695486585971]
詐欺の一種であるポンツィスキームは、近年スマートコントラクトで発見され、巨額の損失をもたらした。
既存の検出手法は主にルールベースのアプローチと機械学習技術に焦点を当てている。
PonziGuardは,契約実行時の動作に基づく効率的なPonzi検出手法である。
論文 参考訳(メタデータ) (2024-06-03T01:17:48Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
ブロックチェーンのような分散型アプローチは、複数のエンティティ間でコンセンサスメカニズムを実装することで、魅力的なソリューションを提供する。
フェデレートラーニング(FL)は、参加者がデータのプライバシを保護しながら、協力的にモデルをトレーニングすることを可能にする。
本稿では,ブロックチェーンのセキュリティ機能とFLのプライバシ保護モデルトレーニング機能の相乗効果について検討する。
論文 参考訳(メタデータ) (2024-03-28T07:08:26Z) - Vulnerability Scanners for Ethereum Smart Contracts: A Large-Scale Study [44.25093111430751]
2023年だけでも、そのような脆弱性は数十億ドルを超える巨額の損失をもたらした。
スマートコントラクトの脆弱性を検出し、軽減するために、さまざまなツールが開発されている。
本研究では,既存のセキュリティスキャナの有効性と,現在も継続している脆弱性とのギャップについて検討する。
論文 参考訳(メタデータ) (2023-12-27T11:26:26Z) - Improving the Accuracy of Transaction-Based Ponzi Detection on Ethereum [13.233535179219633]
昔ながらの詐欺であるPonziスキームが、ブロックチェーンで人気になった。
ほとんどのPonzi検出方法は、そのスマートコントラクトソースコードに基づいてPonziスキームを検出する。
我々は、マシンラーニングアルゴリズムが最大30%高いF1スコアを達成することができる85の新機能(22のアカウントベース、63の新しい時系列機能)を提案する。
論文 参考訳(メタデータ) (2023-08-31T01:54:31Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
本稿では,アダプティブサンプリングとアグリゲーションに基づくグラフニューラルネットワーク(ASA-GNN)を提案する。
ノイズの多いノードをフィルタリングし、不正なノードを補うために、隣のサンプリング戦略を実行する。
3つのファイナンシャルデータセットの実験により,提案手法のASA-GNNは最先端のデータセットよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-07-11T07:48:39Z) - SourceP: Detecting Ponzi Schemes on Ethereum with Source Code [0.5898893619901381]
SourcePは、事前訓練されたモデルとデータフローを使用して、プラットフォーム上のスマートPonziスキームを検出する方法である。
まず、スマートコントラクトのソースコードをデータフローグラフに変換し、学習コード表現に基づく事前学習モデルを導入し、分類モデルを構築する。
実験の結果、SourcePは87.2%のリコールと90.7%のFスコアを達成し、スマートPonziスキームを検出した。
論文 参考訳(メタデータ) (2023-06-02T16:40:42Z) - Blockchain Large Language Models [65.7726590159576]
本稿では,異常なブロックチェーントランザクションを検出するための動的,リアルタイムなアプローチを提案する。
提案するツールであるBlockGPTは、ブロックチェーンアクティビティのトレース表現を生成し、大規模な言語モデルをスクラッチからトレーニングして、リアルタイム侵入検出システムとして機能させる。
論文 参考訳(メタデータ) (2023-04-25T11:56:18Z) - Explainable Ponzi Schemes Detection on Ethereum [1.3812010983144802]
ポンツィスキームは最も一般的な詐欺の一つである。
本稿では,実世界のスマートポンジ契約を検出する分類器を提案する。
優れた分類品質を保証し、AI技術を用いた分類への影響を調査する、小型で効果的な機能のセットを特定します。
論文 参考訳(メタデータ) (2023-01-12T08:38:23Z) - Data-driven Smart Ponzi Scheme Detection [11.467476506780969]
スマートPonziスキームは、スマートコントラクトアカウントと暗号通貨を使用してPonziスキームを実装する、新しいタイプの経済犯罪である。
本稿では,データ駆動型スマートPonziスキーム検出システムを提案する。
従来の手法と比較して、提案システムは非常に限定的な人間とコンピュータの相互作用を必要とする。
論文 参考訳(メタデータ) (2021-08-20T07:45:36Z) - Smart Contract Vulnerability Detection: From Pure Neural Network to
Interpretable Graph Feature and Expert Pattern Fusion [48.744359070088166]
従来のスマートコントラクトの脆弱性検出方法は、専門家の規則に大きく依存している。
最近のディープラーニングアプローチはこの問題を軽減するが、有用な専門家の知識をエンコードすることができない。
ソースコードから専門家パターンを抽出する自動ツールを開発する。
次に、深いグラフの特徴を抽出するために、コードをセマンティックグラフにキャストします。
論文 参考訳(メタデータ) (2021-06-17T07:12:13Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
既存の機械学習ベースの脆弱性検出方法は制限され、スマートコントラクトが脆弱かどうかのみ検査される。
スマートコントラクトのための初のDeep Neural Network(DNN)ベースの脆弱性検出フレームワークであるESCORTを提案する。
ESCORTは6種類の脆弱性に対して平均95%のF1スコアを達成し,検出時間は契約あたり0.02秒であることを示す。
論文 参考訳(メタデータ) (2021-03-23T15:04:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。