論文の概要: GAT-GAN : A Graph-Attention-based Time-Series Generative Adversarial
Network
- arxiv url: http://arxiv.org/abs/2306.01999v1
- Date: Sat, 3 Jun 2023 04:23:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-06 20:55:14.959243
- Title: GAT-GAN : A Graph-Attention-based Time-Series Generative Adversarial
Network
- Title(参考訳): GAT-GAN : グラフアテンションに基づく時系列生成対向ネットワーク
- Authors: Srikrishna Iyer and Teng Teck Hou
- Abstract要約: 我々はGAT-GAN(Graph-Attention-based Generative Adversarial Network)を提案する。
GAT-GANは、敵対的に訓練されたオートエンコーダアーキテクチャを用いて、高忠実度の時系列データを生成する。
本稿では、Frechet Transformer distance(FTD)スコアと呼ばれる時系列データに対するFrechet Inception distance-like(FID)メトリクスを導入し、生成データの品質と多様性を評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative Adversarial Networks (GANs) have proven to be a powerful tool for
generating realistic synthetic data. However, traditional GANs often struggle
to capture complex relationships between features which results in generation
of unrealistic multivariate time-series data. In this paper, we propose a
Graph-Attention-based Generative Adversarial Network (GAT-GAN) that explicitly
includes two graph-attention layers, one that learns temporal dependencies
while the other captures spatial relationships. Unlike RNN-based GANs that
struggle with modeling long sequences of data points, GAT-GAN generates long
time-series data of high fidelity using an adversarially trained autoencoder
architecture. Our empirical evaluations, using a variety of real-time-series
datasets, show that our framework consistently outperforms state-of-the-art
benchmarks based on \emph{Frechet Transformer distance} and \emph{Predictive
score}, that characterizes (\emph{Fidelity, Diversity}) and \emph{predictive
performance} respectively. Moreover, we introduce a Frechet Inception
distance-like (FID) metric for time-series data called Frechet Transformer
distance (FTD) score (lower is better), to evaluate the quality and variety of
generated data. We also found that low FTD scores correspond to the
best-performing downstream predictive experiments. Hence, FTD scores can be
used as a standardized metric to evaluate synthetic time-series data.
- Abstract(参考訳): generative adversarial networks (gans) は現実的な合成データを生成する強力なツールであることが証明されている。
しかし、従来のganは、非現実的な多変量時系列データを生成する特徴の間の複雑な関係を捉えるのに苦労する。
本稿では,2つのグラフアテンション層を明示的に含み,一方は時間依存を学習し,他方は空間的関係を捉えるグラフアテンションに基づく生成逆ネットワーク(gat-gan)を提案する。
データポイントの長いシーケンスのモデリングに苦労するRNNベースのGANとは異なり、GAT-GANは、逆向きに訓練されたオートエンコーダアーキテクチャを用いて、高忠実度の時系列データを生成する。
各種実時間時系列データセットを用いた実証評価の結果,我々のフレームワークは,それぞれ (\emph{Fidelity, Diversity}) と \emph{Predictive Performance} を特徴付ける, \emph{Frechet Transformer distance} と \emph{Predictive score} に基づく最先端ベンチマークを一貫して上回っていることがわかった。
さらに、Frechet Transformer distance(FTD)スコアと呼ばれる時系列データに対するFrechet Inception distance-like(FID)メトリクスを導入し、生成データの品質と多様性を評価する。
また, FTDの低いスコアは, 下流予測実験の結果と一致した。
したがって、ftdスコアは、合成時系列データを評価するための標準指標として使用できる。
関連論文リスト
- Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
時系列予測は、エネルギー消費予測、病気の伝染モニタリング、天気予報など、様々な実世界の応用において重要な役割を果たす。
既存のほとんどのメソッドは、分散デバイスから中央クラウドサーバに大量のデータを収集する、集中的なトレーニングパラダイムに依存しています。
本稿では,情報合成データを補助的知識キャリアとして生成することにより,データの均一性に対処する新しいフレームワークであるFed-TRENDを提案する。
論文 参考訳(メタデータ) (2024-11-24T04:56:45Z) - SONNET: Enhancing Time Delay Estimation by Leveraging Simulated Audio [17.811771707446926]
学習に基づく手法は、合成データにもとづいても、新しい実世界のデータに基づいてGCC-PHATを著しく上回り得ることを示す。
トレーニングされたモデルであるSONNETは、リアルタイムに実行可能で、多くの実データアプリケーションのために、最初から新しいデータに取り組んでいます。
論文 参考訳(メタデータ) (2024-11-20T10:23:21Z) - FourierGNN: Rethinking Multivariate Time Series Forecasting from a Pure
Graph Perspective [48.00240550685946]
現在の最先端グラフニューラルネットワーク(GNN)ベースの予測手法は、通常、シリーズ間(空間)のダイナミックスとシリーズ内(時間)の依存関係をキャプチャするために、グラフネットワーク(GCNなど)と時間ネットワーク(LSTMなど)の両方を必要とする。
提案するフーリエグラフ演算子(FGO)を積み重ねて,フーリエ空間で行列乗算を行うことにより,新しいフーリエグラフニューラルネットワーク(FourierGNN)を提案する。
7つのデータセットに対する実験は、より効率が良く、パラメータも少ないという優れた性能を示した。
論文 参考訳(メタデータ) (2023-11-10T17:13:26Z) - Fully-Connected Spatial-Temporal Graph for Multivariate Time-Series Data [50.84488941336865]
完全時空間グラフニューラルネットワーク(FC-STGNN)という新しい手法を提案する。
グラフ構築のために、時間的距離に基づいて、すべてのタイムスタンプにセンサーを接続する減衰グラフを設計する。
グラフ畳み込みのために,移動プールGNN層を用いたFCグラフ畳み込みを考案し,ST依存性を効果的に把握し,効率的な表現を学習する。
論文 参考訳(メタデータ) (2023-09-11T08:44:07Z) - HyperTime: Implicit Neural Representation for Time Series [131.57172578210256]
暗黙の神経表現(INR)は、データの正確で解像度に依存しないエンコーディングを提供する強力なツールとして最近登場した。
本稿では、INRを用いて時系列の表現を分析し、再構成精度とトレーニング収束速度の点で異なるアクティベーション関数を比較した。
本稿では,INRを利用して時系列データセット全体の圧縮潜在表現を学習するハイパーネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-08-11T14:05:51Z) - TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network [4.989480853499916]
時系列データは、医療機械学習アプリケーションで使用される最も一般的なタイプのデータの1つである。
本稿では,現実的な合成時系列データ列を生成可能な変換器ベースのGANであるTS-GANを紹介する。
実時間と生成した時系列データの類似性を実証するために,可視化と次元削減技術を用いている。
論文 参考訳(メタデータ) (2022-02-06T03:05:47Z) - Towards Generating Real-World Time Series Data [52.51620668470388]
時系列データ生成のための新しい生成フレームワーク - RTSGANを提案する。
RTSGANは、時系列インスタンスと固定次元潜在ベクトルの間のマッピングを提供するエンコーダデコーダモジュールを学習する。
不足した値の時系列を生成するために、RTSGANに観測埋め込み層と決定・生成デコーダを更に装備する。
論文 参考訳(メタデータ) (2021-11-16T11:31:37Z) - Networked Time Series Prediction with Incomplete Data [59.45358694862176]
我々は、歴史と未来の両方で欠落した値を持つ不完全なデータでトレーニングできる新しいディープラーニングフレームワークであるNetS-ImpGANを提案する。
3つの実世界のデータセットに対して、異なるパターンと欠落率で広範な実験を行う。
論文 参考訳(メタデータ) (2021-10-05T18:20:42Z) - PSA-GAN: Progressive Self Attention GANs for Synthetic Time Series [0.0]
PSA-GAN(Generative Adversarial Network, GAN)は, 高品質な時系列サンプルを生成する。
PSA-GANは,実データのみを使用するベースライン上の2つの下流予測タスクにおいて,誤差を低減できることを示す。
論文 参考訳(メタデータ) (2021-08-02T15:30:15Z) - Conditional GAN for timeseries generation [0.0]
実時間時系列データをモデル化するために,TSGAN(Time Series GAN)を提案する。
ベンチマーク時系列データベースから,70データセット上でTSGANを評価する。
論文 参考訳(メタデータ) (2020-06-30T02:19:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。