Exploring Global and Local Information for Anomaly Detection with Normal
Samples
- URL: http://arxiv.org/abs/2306.02025v1
- Date: Sat, 3 Jun 2023 06:51:22 GMT
- Title: Exploring Global and Local Information for Anomaly Detection with Normal
Samples
- Authors: Fan Xu, Nan Wang, Xibin Zhao
- Abstract summary: Anomaly detection aims to detect data that do not conform to regular patterns, and such data is also called outliers.
In many realistic scenarios, only the samples following normal behavior are observed, while we can hardly obtain any anomaly information.
We propose an anomaly detection method GALDetector which is combined of global and local information based on observed normal samples.
- Score: 23.68962459770419
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection aims to detect data that do not conform to regular
patterns, and such data is also called outliers. The anomalies to be detected
are often tiny in proportion, containing crucial information, and are suitable
for application scenes like intrusion detection, fraud detection, fault
diagnosis, e-commerce platforms, et al. However, in many realistic scenarios,
only the samples following normal behavior are observed, while we can hardly
obtain any anomaly information. To address such problem, we propose an anomaly
detection method GALDetector which is combined of global and local information
based on observed normal samples. The proposed method can be divided into a
three-stage method. Firstly, the global similar normal scores and the local
sparsity scores of unlabeled samples are computed separately. Secondly,
potential anomaly samples are separated from the unlabeled samples
corresponding to these two scores and corresponding weights are assigned to the
selected samples. Finally, a weighted anomaly detector is trained by loads of
samples, then the detector is utilized to identify else anomalies. To evaluate
the effectiveness of the proposed method, we conducted experiments on three
categories of real-world datasets from diverse domains, and experimental
results show that our method achieves better performance when compared with
other state-of-the-art methods.
Related papers
- Fuzzy Granule Density-Based Outlier Detection with Multi-Scale Granular Balls [65.44462297594308]
Outlier detection refers to the identification of anomalous samples that deviate significantly from the distribution of normal data.
Most unsupervised outlier detection methods are carefully designed to detect specified outliers.
We propose a fuzzy rough sets-based multi-scale outlier detection method to identify various types of outliers.
arXiv Detail & Related papers (2025-01-06T12:35:51Z) - Adaptive Deviation Learning for Visual Anomaly Detection with Data Contamination [20.4008901760593]
We introduce a systematic adaptive method that employs deviation learning to compute anomaly scores end-to-end.
Our proposed method surpasses competing techniques and exhibits both stability and robustness in the presence of data contamination.
arXiv Detail & Related papers (2024-11-14T16:10:15Z) - Enhancing Anomaly Detection via Generating Diversified and Hard-to-distinguish Synthetic Anomalies [7.021105583098609]
Recent approaches have focused on leveraging domain-specific transformations or perturbations to generate synthetic anomalies from normal samples.
We introduce a novel domain-agnostic method that employs a set of conditional perturbators and a discriminator.
We demonstrate the superiority of our method over state-of-the-art benchmarks.
arXiv Detail & Related papers (2024-09-16T08:15:23Z) - GLAD: Towards Better Reconstruction with Global and Local Adaptive Diffusion Models for Unsupervised Anomaly Detection [60.78684630040313]
Diffusion models tend to reconstruct normal counterparts of test images with certain noises added.
From the global perspective, the difficulty of reconstructing images with different anomalies is uneven.
We propose a global and local adaptive diffusion model (abbreviated to GLAD) for unsupervised anomaly detection.
arXiv Detail & Related papers (2024-06-11T17:27:23Z) - Anomaly Detection by Context Contrasting [57.695202846009714]
Anomaly detection focuses on identifying samples that deviate from the norm.
Recent advances in self-supervised learning have shown great promise in this regard.
We propose Con$$, which learns through context augmentations.
arXiv Detail & Related papers (2024-05-29T07:59:06Z) - MSFlow: Multi-Scale Flow-based Framework for Unsupervised Anomaly
Detection [124.52227588930543]
Unsupervised anomaly detection (UAD) attracts a lot of research interest and drives widespread applications.
An inconspicuous yet powerful statistics model, the normalizing flows, is appropriate for anomaly detection and localization in an unsupervised fashion.
We propose a novel Multi-Scale Flow-based framework dubbed MSFlow composed of asymmetrical parallel flows followed by a fusion flow.
Our MSFlow achieves a new state-of-the-art with a detection AUORC score of up to 99.7%, localization AUCROC score of 98.8%, and PRO score of 97.1%.
arXiv Detail & Related papers (2023-08-29T13:38:35Z) - Set Features for Fine-grained Anomaly Detection [32.36217153362305]
We propose set features that model each sample by the distribution its elements.
We compute the anomaly score of each sample using a simple density estimation method.
Our simple-to-implement approach outperforms the state-of-the-art in image-level logical anomaly detection.
arXiv Detail & Related papers (2023-02-23T18:58:57Z) - Hierarchical Semi-Supervised Contrastive Learning for
Contamination-Resistant Anomaly Detection [81.07346419422605]
Anomaly detection aims at identifying deviant samples from the normal data distribution.
Contrastive learning has provided a successful way to sample representation that enables effective discrimination on anomalies.
We propose a novel hierarchical semi-supervised contrastive learning framework, for contamination-resistant anomaly detection.
arXiv Detail & Related papers (2022-07-24T18:49:26Z) - Augment to Detect Anomalies with Continuous Labelling [10.646747658653785]
Anomaly detection is to recognize samples that differ in some respect from the training observations.
Recent state-of-the-art deep learning-based anomaly detection methods suffer from high computational cost, complexity, unstable training procedures, and non-trivial implementation.
We leverage a simple learning procedure that trains a lightweight convolutional neural network, reaching state-of-the-art performance in anomaly detection.
arXiv Detail & Related papers (2022-07-03T20:11:51Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
We introduce a novel weakly-supervised anomaly detection framework to train detection models.
The proposed approach learns discriminative normality by leveraging the labeled anomalies and a prior probability.
Our model is substantially more sample-efficient and robust, and performs significantly better than state-of-the-art competing methods in both closed-set and open-set settings.
arXiv Detail & Related papers (2021-08-01T14:33:17Z) - Toward Deep Supervised Anomaly Detection: Reinforcement Learning from
Partially Labeled Anomaly Data [150.9270911031327]
We consider the problem of anomaly detection with a small set of partially labeled anomaly examples and a large-scale unlabeled dataset.
Existing related methods either exclusively fit the limited anomaly examples that typically do not span the entire set of anomalies, or proceed with unsupervised learning from the unlabeled data.
We propose here instead a deep reinforcement learning-based approach that enables an end-to-end optimization of the detection of both labeled and unlabeled anomalies.
arXiv Detail & Related papers (2020-09-15T03:05:39Z) - OIAD: One-for-all Image Anomaly Detection with Disentanglement Learning [23.48763375455514]
We propose a One-for-all Image Anomaly Detection system based on disentangled learning using only clean samples.
Our experiments with three datasets show that OIAD can detect over $90%$ of anomalies while maintaining a low false alarm rate.
arXiv Detail & Related papers (2020-01-18T09:57:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.