A novel approach towards the classification of Bone Fracture from Musculoskeletal Radiography images using Attention Based Transfer Learning
- URL: http://arxiv.org/abs/2410.14833v1
- Date: Fri, 18 Oct 2024 19:07:24 GMT
- Title: A novel approach towards the classification of Bone Fracture from Musculoskeletal Radiography images using Attention Based Transfer Learning
- Authors: Sayeda Sanzida Ferdous Ruhi, Fokrun Nahar, Adnan Ferdous Ashrafi,
- Abstract summary: We deploy an attention-based transfer learning model to detect bone fractures in X-ray scans.
Our model achieves a state-of-the-art accuracy of more than 90% in fracture classification.
- Score: 0.0
- License:
- Abstract: Computer-aided diagnosis (CAD) is today considered a vital tool in the field of biological image categorization, segmentation, and other related tasks. The current breakthrough in computer vision algorithms and deep learning approaches has substantially enhanced the effectiveness and precision of apps built to recognize and locate regions of interest inside medical photographs. Among the different disciplines of medical image analysis, bone fracture detection, and classification have exhibited exceptional potential. Although numerous imaging modalities are applied in medical diagnostics, X-rays are particularly significant in this sector due to their broad availability, ease of use, and extensive information extraction capabilities. This research studies bone fracture categorization using the FracAtlas dataset, which comprises 4,083 musculoskeletal radiography pictures. Given the transformational development in transfer learning, particularly its efficacy in medical image processing, we deploy an attention-based transfer learning model to detect bone fractures in X-ray scans. Though the popular InceptionV3 and DenseNet121 deep learning models have been widely used, they still have the potential to be employed in crucial jobs. In this research, alongside transfer learning, a separate attention mechanism is also applied to boost the capabilities of transfer learning techniques. Through rigorous optimization, our model achieves a state-of-the-art accuracy of more than 90\% in fracture classification. This work contributes to the expanding corpus of research focused on the application of transfer learning to medical imaging, notably in the context of X-ray processing, and emphasizes the promise for additional exploration in this domain.
Related papers
- Deep Learning Applications in Medical Image Analysis: Advancements, Challenges, and Future Directions [0.0]
Recent breakthroughs in deep learning, a subset of artificial intelligence, have markedly revolutionized the analysis of medical pictures.
CNNs have demonstrated remarkable proficiency in autonomously learning features from multidimensional medical pictures.
These models have been utilized across multiple medical disciplines, including pathology, radiology, ophthalmology, and cardiology.
arXiv Detail & Related papers (2024-10-18T02:57:14Z) - Exploring the Role of Convolutional Neural Networks (CNN) in Dental
Radiography Segmentation: A Comprehensive Systematic Literature Review [1.342834401139078]
This work demonstrates how Convolutional Neural Networks (CNNs) can be employed to analyze images, serving as effective tools for detecting dental pathologies.
CNNs utilized for segmenting and categorizing teeth exhibited their highest level of performance overall.
arXiv Detail & Related papers (2024-01-17T13:00:57Z) - Empowering Medical Imaging with Artificial Intelligence: A Review of
Machine Learning Approaches for the Detection, and Segmentation of COVID-19
Using Radiographic and Tomographic Images [2.232567376976564]
Since 2019, the global dissemination of the Coronavirus and its novel strains has resulted in a surge of new infections.
The use of X-ray and computed tomography (CT) imaging techniques is critical in diagnosing and managing COVID-19.
This paper focuses on the methodological approach of using machine learning (ML) to enhance medical imaging for COVID-19 diagnosis.
arXiv Detail & Related papers (2024-01-13T09:17:39Z) - Object Detection for Automated Coronary Artery Using Deep Learning [0.0]
In our paper, we utilize the object detection method on X-ray angiography images to precisely identify the location of coronary artery stenosis.
This model enables automatic and real-time detection of stenosis locations, assisting in the crucial and sensitive decision-making process.
arXiv Detail & Related papers (2023-12-19T13:14:52Z) - Case Studies on X-Ray Imaging, MRI and Nuclear Imaging [0.0]
We will focus on how AI-based approaches, particularly the use of Convolutional Neural Networks (CNN), can assist in disease detection through medical imaging technology.
CNN is a commonly used approach for image analysis due to its ability to extract features from raw input images.
arXiv Detail & Related papers (2023-06-03T09:05:35Z) - Significantly improving zero-shot X-ray pathology classification via fine-tuning pre-trained image-text encoders [50.689585476660554]
We propose a new fine-tuning strategy that includes positive-pair loss relaxation and random sentence sampling.
Our approach consistently improves overall zero-shot pathology classification across four chest X-ray datasets and three pre-trained models.
arXiv Detail & Related papers (2022-12-14T06:04:18Z) - Computer Vision on X-ray Data in Industrial Production and Security
Applications: A survey [89.45221564651145]
This survey reviews the recent research on using computer vision and machine learning for X-ray analysis in industrial production and security applications.
It covers the applications, techniques, evaluation metrics, datasets, and performance comparison of those techniques on publicly available datasets.
arXiv Detail & Related papers (2022-11-10T13:37:36Z) - Development of an algorithm for medical image segmentation of bone
tissue in interaction with metallic implants [58.720142291102135]
This study develops an algorithm for calculating bone growth in contact with metallic implants.
Bone and implant tissue were manually segmented in the training data set.
In terms of network accuracy, the model reached around 98%.
arXiv Detail & Related papers (2022-04-22T08:17:20Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
We present a novel approach for disease generation in X-rays using a conditional generative adversarial learning.
We generate a corresponding radiology image in a target domain while preserving the identity of the patient.
We then use the generated X-ray image in the target domain to augment our training to improve the detection performance.
arXiv Detail & Related papers (2021-10-25T14:15:57Z) - Semantic segmentation of multispectral photoacoustic images using deep
learning [53.65837038435433]
Photoacoustic imaging has the potential to revolutionise healthcare.
Clinical translation of the technology requires conversion of the high-dimensional acquired data into clinically relevant and interpretable information.
We present a deep learning-based approach to semantic segmentation of multispectral photoacoustic images.
arXiv Detail & Related papers (2021-05-20T09:33:55Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.