TransRUPNet for Improved Polyp Segmentation
- URL: http://arxiv.org/abs/2306.02176v3
- Date: Tue, 30 Apr 2024 20:33:41 GMT
- Title: TransRUPNet for Improved Polyp Segmentation
- Authors: Debesh Jha, Nikhil Kumar Tomar, Debayan Bhattacharya, Ulas Bagci,
- Abstract summary: We develop an advanced deep learning-based architecture, Transformer based Residual Upsampling Network (TransRUPNet) for automatic and real-time polyp segmentation.
With the image size of $256times256$, the proposed method achieves an excellent real-time operation speed of 47.07 frames per second.
- Score: 1.2498887792836635
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Colorectal cancer is among the most common cause of cancer worldwide. Removal of precancerous polyps through early detection is essential to prevent them from progressing to colon cancer. We develop an advanced deep learning-based architecture, Transformer based Residual Upsampling Network (TransRUPNet) for automatic and real-time polyp segmentation. The proposed architecture, TransRUPNet, is an encoder-decoder network consisting of three encoder and decoder blocks with additional upsampling blocks at the end of the network. With the image size of $256\times256$, the proposed method achieves an excellent real-time operation speed of 47.07 frames per second with an average mean dice coefficient score of 0.7786 and mean Intersection over Union of 0.7210 on the out-of-distribution polyp datasets. The results on the publicly available PolypGen dataset suggest that TransRUPNet can give real-time feedback while retaining high accuracy for in-distribution datasets. Furthermore, we demonstrate the generalizability of the proposed method by showing that it significantly improves performance on out-of-distribution datasets compared to the existing methods. The source code of our network is available at https://github.com/DebeshJha/TransRUPNet.
Related papers
- BetterNet: An Efficient CNN Architecture with Residual Learning and Attention for Precision Polyp Segmentation [0.6062751776009752]
This research presents BetterNet, a convolutional neural network architecture that combines residual learning and attention methods to enhance the accuracy of polyp segmentation.
BetterNet shows promise in integrating computer-assisted diagnosis techniques to enhance the detection of polyps and the early recognition of cancer.
arXiv Detail & Related papers (2024-05-05T21:08:49Z) - TransNetR: Transformer-based Residual Network for Polyp Segmentation
with Multi-Center Out-of-Distribution Testing [2.3293678240472517]
We propose a novel real-time deep learning based architecture, Transformer based Residual network (TransNetR) for colon polyp segmentation.
TransNetR is an encoder-decoder network that consists of a pre-trained ResNet50 as the encoder, three decoder blocks, and an upsampling layer at the end of the network.
It obtains a high dice coefficient of 0.8706 and a mean Intersection over union of 0.8016 and retains a real-time processing speed of 54.60 on the Kvasir-SEG dataset.
arXiv Detail & Related papers (2023-03-13T19:11:17Z) - Lesion-aware Dynamic Kernel for Polyp Segmentation [49.63274623103663]
We propose a lesion-aware dynamic network (LDNet) for polyp segmentation.
It is a traditional u-shape encoder-decoder structure incorporated with a dynamic kernel generation and updating scheme.
This simple but effective scheme endows our model with powerful segmentation performance and generalization capability.
arXiv Detail & Related papers (2023-01-12T09:53:57Z) - RUPNet: Residual upsampling network for real-time polyp segmentation [2.6179759969345002]
We propose a novel architecture, Residual Upsampling Network (RUPNet) for colon polyp segmentation.
With an image size of $512 times 512$, the proposed method achieves an excellent real-time operation speed of 152.60 frames per second.
arXiv Detail & Related papers (2023-01-06T20:21:37Z) - DilatedSegNet: A Deep Dilated Segmentation Network for Polyp
Segmentation [2.6179759969345002]
Colorectal cancer (CRC) is the second leading cause of cancer-related death worldwide.
Powered by deep learning, computer-aided diagnosis (CAD) systems can detect regions in the colon overlooked by physicians during colonoscopy.
Lacking high accuracy and real-time speed are the essential obstacles to be overcome for successful clinical integration of such systems.
arXiv Detail & Related papers (2022-10-24T20:36:30Z) - Automatic Polyp Segmentation with Multiple Kernel Dilated Convolution
Network [3.1374864575817214]
In this study, we introduce a novel deep learning architecture, named textbfMKDCNet, for automatic polyp segmentation.
Experiments on four publicly available polyp datasets and cell nuclei dataset show that the proposed MKDCNet outperforms the state-of-the-art methods.
MKDCNet can be a strong benchmark for building real-time systems for clinical colonoscopies.
arXiv Detail & Related papers (2022-06-13T15:47:38Z) - Self-Supervised U-Net for Segmenting Flat and Sessile Polyps [63.62764375279861]
Development of colorectal polyps is one of the earliest signs of cancer.
Early detection and resection of polyps can greatly increase survival rate to 90%.
Computer-Aided Diagnosis systems(CADx) has been proposed that detect polyps by processing the colonoscopic videos.
arXiv Detail & Related papers (2021-10-17T09:31:20Z) - Automatic Polyp Segmentation via Multi-scale Subtraction Network [100.94922587360871]
In clinical practice, precise polyp segmentation provides important information in the early detection of colorectal cancer.
Most existing methods are based on U-shape structure and use element-wise addition or concatenation to fuse different level features progressively in decoder.
We propose a multi-scale subtraction network (MSNet) to segment polyp from colonoscopy image.
arXiv Detail & Related papers (2021-08-11T07:54:07Z) - Deep ensembles based on Stochastic Activation Selection for Polyp
Segmentation [82.61182037130406]
This work deals with medical image segmentation and in particular with accurate polyp detection and segmentation during colonoscopy examinations.
Basic architecture in image segmentation consists of an encoder and a decoder.
We compare some variant of the DeepLab architecture obtained by varying the decoder backbone.
arXiv Detail & Related papers (2021-04-02T02:07:37Z) - ReActNet: Towards Precise Binary Neural Network with Generalized
Activation Functions [76.05981545084738]
We propose several ideas for enhancing a binary network to close its accuracy gap from real-valued networks without incurring any additional computational cost.
We first construct a baseline network by modifying and binarizing a compact real-valued network with parameter-free shortcuts.
We show that the proposed ReActNet outperforms all the state-of-the-arts by a large margin.
arXiv Detail & Related papers (2020-03-07T02:12:02Z) - R-FCN: Object Detection via Region-based Fully Convolutional Networks [87.62557357527861]
We present region-based, fully convolutional networks for accurate and efficient object detection.
Our result is achieved at a test-time speed of 170ms per image, 2.5-20x faster than the Faster R-CNN counterpart.
arXiv Detail & Related papers (2016-05-20T15:50:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.