論文の概要: rPPG-MAE: Self-supervised Pre-training with Masked Autoencoders for
Remote Physiological Measurement
- arxiv url: http://arxiv.org/abs/2306.02301v1
- Date: Sun, 4 Jun 2023 08:53:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-06 18:49:21.347470
- Title: rPPG-MAE: Self-supervised Pre-training with Masked Autoencoders for
Remote Physiological Measurement
- Title(参考訳): rPPG-MAE:リモート生理計測のためのマスクオートエンコーダを用いた自己教師型プレトレーニング
- Authors: Xin Liu, Yuting Zhang, Zitong Yu, Hao Lu, Huanjing Yue, Jingyu Yang
- Abstract要約: リモート光胸腺撮影(r-MAE)はヒトのバイタルサインを知覚する重要な技術である。
本稿では,生理的信号に先行する自己相似性を抽出する自己教師型フレームワークを開発する。
また,提案手法をPUREとUBFC-rという2つの公開データセット上で評価した。
- 参考スコア(独自算出の注目度): 36.54109704201048
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Remote photoplethysmography (rPPG) is an important technique for perceiving
human vital signs, which has received extensive attention. For a long time,
researchers have focused on supervised methods that rely on large amounts of
labeled data. These methods are limited by the requirement for large amounts of
data and the difficulty of acquiring ground truth physiological signals. To
address these issues, several self-supervised methods based on contrastive
learning have been proposed. However, they focus on the contrastive learning
between samples, which neglect the inherent self-similar prior in physiological
signals and seem to have a limited ability to cope with noisy. In this paper, a
linear self-supervised reconstruction task was designed for extracting the
inherent self-similar prior in physiological signals. Besides, a specific
noise-insensitive strategy was explored for reducing the interference of motion
and illumination. The proposed framework in this paper, namely rPPG-MAE,
demonstrates excellent performance even on the challenging VIPL-HR dataset. We
also evaluate the proposed method on two public datasets, namely PURE and
UBFC-rPPG. The results show that our method not only outperforms existing
self-supervised methods but also exceeds the state-of-the-art (SOTA) supervised
methods. One important observation is that the quality of the dataset seems
more important than the size in self-supervised pre-training of rPPG. The
source code is released at https://github.com/linuxsino/rPPG-MAE.
- Abstract(参考訳): リモートフォトプレチモグラフィ(rppg)は、ヒトの生命徴候を知覚する重要な技術であり、多くの注目を集めている。
長い間、研究者は大量のラベル付きデータに依存する教師付き手法に力を入れてきた。
これらの方法は、大量のデータを必要とすることと、基礎的真理の生理学的信号を取得することの困難さによって制限される。
これらの課題に対処するため,コントラスト学習に基づく自己指導手法が提案されている。
しかし、彼らは生理的信号の自己相似性を無視し、ノイズに対処する能力に制限のあるサンプル間の対照的な学習に焦点を当てている。
本稿では,生理的信号の自己相似性を抽出するために,線形自己教師型再構成タスクを設計した。
さらに、運動と照明の干渉を減らすための特定のノイズ非感受性戦略を検討した。
提案するフレームワーク,すなわちrPPG-MAEは,挑戦的なVIPL-HRデータセットにおいても優れた性能を示す。
また,提案手法をPUREとUBFC-rPPGという2つの公開データセット上で評価した。
その結果,本手法は既存の自己管理手法に勝るだけでなく,最先端管理手法(SOTA)よりも優れていることがわかった。
1つの重要な観察は、データセットの品質がrppgの自己教師付き事前訓練のサイズよりも重要であるように見えることである。
ソースコードはhttps://github.com/linuxsino/rPPG-MAEで公開されている。
関連論文リスト
- An efficient framework based on large foundation model for cervical cytopathology whole slide image screening [13.744580492120749]
本稿では,教師なし・弱教師付き学習によるWSIレベルラベルのみを用いた頚部細胞病理学WSI分類のための効率的なフレームワークを提案する。
CSDおよびFNAC 2019データセットで実施された実験は、提案手法が様々なMIL手法の性能を高め、最先端(SOTA)性能を達成することを示した。
論文 参考訳(メタデータ) (2024-07-16T08:21:54Z) - Incremental Self-training for Semi-supervised Learning [56.57057576885672]
ISTは単純だが有効であり、既存の自己学習に基づく半教師あり学習手法に適合する。
提案したISTを5つのデータセットと2種類のバックボーンで検証し,認識精度と学習速度を効果的に向上させる。
論文 参考訳(メタデータ) (2024-04-14T05:02:00Z) - Self-similarity Prior Distillation for Unsupervised Remote Physiological Measurement [39.0083078989343]
教師なしr推定のための自己相似事前蒸留(SSPD)フレームワークを提案する。
SSPDは心活動の本質的な自己相似性に重点を置いている。
最先端の教師付き手法と比較すると、同等か、さらに優れたパフォーマンスを実現している。
論文 参考訳(メタデータ) (2023-11-09T02:24:51Z) - Scaling Representation Learning from Ubiquitous ECG with State-Space
Models [28.776392386988043]
我々は、ECG信号からの表現学習のための事前訓練された状態空間モデルであるtextbfWildECGを紹介する。
我々は,275,000個のECG記録を野生で収集し,下流のタスクで評価することで,このモデルを自己指導的に訓練する。
論文 参考訳(メタデータ) (2023-09-26T22:08:19Z) - MAPS: A Noise-Robust Progressive Learning Approach for Source-Free
Domain Adaptive Keypoint Detection [76.97324120775475]
クロスドメインキーポイント検出方法は、常に適応中にソースデータにアクセスする必要がある。
本稿では、ターゲット領域に十分に訓練されたソースモデルのみを提供する、ソースフリーなドメイン適応キーポイント検出について考察する。
論文 参考訳(メタデータ) (2023-02-09T12:06:08Z) - Undersampling and Cumulative Class Re-decision Methods to Improve
Detection of Agitation in People with Dementia [16.949993123698345]
消化は認知症(PwD)で最も多い症状の1つである。
前回の研究では、参加者17名から600日間のマルチモーダルウェアラブルセンサデータを収集し、1分間の窓での動揺を検出する機械学習モデルを開発した。
本稿では,まず,不均衡を解消するために異なるアンダーサンプリング手法を実装し,通常の動作データの20%だけが競合的動揺検出モデルの訓練に適しているという結論に至った。
論文 参考訳(メタデータ) (2023-02-07T03:14:00Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
表情認識のためのSFUDA法を提案する。
本手法は,自己教師付き事前学習を利用して,対象データから優れた特徴表現を学習する。
提案手法の有効性を4つの適応方式で検証し,FERに適用した場合,既存のSFUDA法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:24:50Z) - Robust Meta-learning with Sampling Noise and Label Noise via
Eigen-Reptile [78.1212767880785]
Meta-learnerは、利用可能なサンプルがわずかしかないため、過度に適合する傾向がある。
ノイズの多いラベルでデータを扱う場合、メタラーナーはラベルノイズに対して非常に敏感になる可能性がある。
本稿では,タスク固有のパラメータの主要な方向でメタパラメータを更新するEigen-Reptile(ER)を提案する。
論文 参考訳(メタデータ) (2022-06-04T08:48:02Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
パーキンソン病(英: Parkinson's Disease、PD)は、60歳以上の人口の約1%に影響を与える徐々に進化する神経学的疾患である。
PD症状には、震動、剛性、ブレイキネジアがある。
本稿では,スマートフォン端末から受信したIMU信号に基づいて,PDに関連するトレモラスなエピソードを自動的に識別する手法を提案する。
論文 参考訳(メタデータ) (2020-05-06T09:02:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。