論文の概要: Semi-rPPG: Semi-Supervised Remote Physiological Measurement with Curriculum Pseudo-Labeling
- arxiv url: http://arxiv.org/abs/2502.03855v1
- Date: Thu, 06 Feb 2025 08:16:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-07 14:32:39.733916
- Title: Semi-rPPG: Semi-Supervised Remote Physiological Measurement with Curriculum Pseudo-Labeling
- Title(参考訳): 準rPPG : 擬似ラベルを用いた半監督型遠隔生理計測
- Authors: Bingjie Wu, Zitong Yu, Yiping Xie, Wei Liu, Chaoqi Luo, Yong Liu, Rick Siow Mong Goh,
- Abstract要約: Photoplethysmography (r)は、顔画像から心拍数などの生理的信号を監視するための有望な技術である。
現在のr研究は主に、単純な環境で収集されたいくつかの小さな公開データセットに基づいている。
少量のラベル付きデータと豊富なラベル付きデータを活用する半教師付き手法は、このギャップをrラーニングのために埋めることができる。
- 参考スコア(独自算出の注目度): 31.592892663270252
- License:
- Abstract: Remote Photoplethysmography (rPPG) is a promising technique to monitor physiological signals such as heart rate from facial videos. However, the labeled facial videos in this research are challenging to collect. Current rPPG research is mainly based on several small public datasets collected in simple environments, which limits the generalization and scale of the AI models. Semi-supervised methods that leverage a small amount of labeled data and abundant unlabeled data can fill this gap for rPPG learning. In this study, a novel semi-supervised learning method named Semi-rPPG that combines curriculum pseudo-labeling and consistency regularization is proposed to extract intrinsic physiological features from unlabelled data without impairing the model from noises. Specifically, a curriculum pseudo-labeling strategy with signal-to-noise ratio (SNR) criteria is proposed to annotate the unlabelled data while adaptively filtering out the low-quality unlabelled data. Besides, a novel consistency regularization term for quasi-periodic signals is proposed through weak and strong augmented clips. To benefit the research on semi-supervised rPPG measurement, we establish a novel semi-supervised benchmark for rPPG learning through intra-dataset and cross-dataset evaluation on four public datasets. The proposed Semi-rPPG method achieves the best results compared with three classical semi-supervised methods under different protocols. Ablation studies are conducted to prove the effectiveness of the proposed methods.
- Abstract(参考訳): 遠隔プラチスモグラフィー(remote Photoplethysmography, RPPG)は、顔面ビデオからの心拍数などの生理的信号を監視するための有望な技術である。
しかし、この研究におけるラベル付き顔ビデオの収集は困難である。
現在のrPPG研究は主に、単純な環境で収集されたいくつかの小さな公開データセットに基づいており、AIモデルの一般化とスケールを制限する。
少量のラベル付きデータと豊富なラベル付きデータを活用する半教師付き手法は、このギャップをrPPG学習のために埋めることができる。
本研究では,カリキュラムの擬似ラベル化と整合性正規化を組み合わせた半教師付き学習手法であるSemi-rPPGを提案する。
具体的には、低品質な非競合データを適応的にフィルタリングしながら、非競合データに注釈を付けるために、信号対雑音比(SNR)基準のカリキュラム擬似ラベル戦略を提案する。
また, 半周期信号に対する新しい整合性正規化項は, 弱い, 強い拡張クリップによって提案される。
半教師付きrPPG測定の利点を生かし,4つの公開データセット上でのデータセット内およびデータセット間評価を通じて,rPPG学習のための新しい半教師付きベンチマークを構築した。
提案手法は,異なるプロトコル下での3つの古典的半教師付き手法と比較して,最もよい結果が得られる。
提案手法の有効性を実証するためにアブレーション研究を行った。
関連論文リスト
- Fully Test-Time rPPG Estimation via Synthetic Signal-Guided Feature Learning [8.901227918730562]
TestTime Adaptation (TTA)では、ソースデータを参照することなく、ラベルのないターゲットデータにオンライン適応することで、さまざまな未確認領域のr信号を適応的に推定することができる。
擬似基底真理として、擬似r信号を用いた合成信号誘導特徴学習法を開発し、潜在r特徴を生成する条件生成装置を誘導する。
論文 参考訳(メタデータ) (2024-07-18T09:22:40Z) - rPPG-MAE: Self-supervised Pre-training with Masked Autoencoders for
Remote Physiological Measurement [36.54109704201048]
リモート光胸腺撮影(r-MAE)はヒトのバイタルサインを知覚する重要な技術である。
本稿では,生理的信号に先行する自己相似性を抽出する自己教師型フレームワークを開発する。
また,提案手法をPUREとUBFC-rという2つの公開データセット上で評価した。
論文 参考訳(メタデータ) (2023-06-04T08:53:28Z) - Robust Semi-Supervised Learning for Histopathology Images through
Self-Supervision Guided Out-of-Distribution Scoring [1.8558180119033003]
本稿では,デジタルヒストロジー画像におけるオープンセット型教師あり学習課題に対処するための新しいパイプラインを提案する。
我々のパイプラインは、自己教師付き学習に基づいて、各未ラベルデータポイントのOODスコアを効率的に推定する。
我々のフレームワークはどんなセミSLフレームワークとも互換性があり、我々の実験は人気のあるMixmatchセミSLフレームワークに基づいています。
論文 参考訳(メタデータ) (2023-03-17T12:38:28Z) - Challenging mitosis detection algorithms: Global labels allow centroid
localization [1.7382198387953947]
ミトコンドリア活性は、異なる種類のがんの診断と予後にとって重要なバイオマーカーである。
本研究では,複雑なシナリオを避けることを提案し,パッチのイメージレベルラベルのみを用いて,ローカライズタスクを弱教師付きで実行する。
TUPAC16データセットで得られた結果は、ひとつのトレーニングフェーズのみを使用して、最先端の手法と競合する。
論文 参考訳(メタデータ) (2022-11-30T09:52:26Z) - Analysis of Semi-Supervised Methods for Facial Expression Recognition [19.442685015494316]
画像認識のためのディープニューラルネットワークのトレーニングは、大規模な人間の注釈付きデータを必要とすることが多い。
ラベル付きデータに対するディープ・ニューラル・ソリューションの信頼性を低減するための半教師付き手法が提案されている。
本研究は,クラス毎に250以上のラベル付きサンプルを用いて,既存の半教師付きメソッドをトレーニングする場合,全ラベル付きデータセットでトレーニングした完全教師付きメソッドと同等のパフォーマンスが得られることを示す。
論文 参考訳(メタデータ) (2022-07-31T23:58:35Z) - Hierarchical Semi-Supervised Contrastive Learning for
Contamination-Resistant Anomaly Detection [81.07346419422605]
異常検出は、通常のデータ分布から逸脱したサンプルを特定することを目的としている。
コントラスト学習は、異常の効果的な識別を可能にする表現のサンプル化に成功している。
汚染耐性異常検出のための新しい階層型半教師付きコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-24T18:49:26Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
医用画像セグメンテーションのためのPatch Confidence Adrial Training (PCA) と呼ばれる半教師付き対向法を提案する。
PCAは各パッチの画素構造とコンテキスト情報を学習し、十分な勾配フィードバックを得る。
本手法は, 医用画像のセグメンテーションにおいて, 最先端の半教師付き手法より優れており, その有効性を示している。
論文 参考訳(メタデータ) (2022-07-24T07:45:47Z) - Cyclic Label Propagation for Graph Semi-supervised Learning [52.102251202186025]
本稿では,CycPropと呼ばれるグラフ半教師付き学習のための新しいフレームワークを提案する。
CycPropはGNNを周期的かつ相互に強化された方法でラベル伝播の過程に統合する。
特に,提案するCycPropでは,GNNモジュールが学習したノード埋め込みをラベル伝搬による拡張情報で更新する。
論文 参考訳(メタデータ) (2020-11-24T02:55:40Z) - Semi-supervised Relation Extraction via Incremental Meta Self-Training [56.633441255756075]
半教師付き関係抽出法は,限られたサンプルからの学習に加え,ラベルのないデータを活用することを目的としている。
既存の自己学習手法は段階的なドリフト問題に悩まされ、未ラベルデータにノイズのある擬似ラベルが組み込まれている。
本稿では,リレーショナルラベル生成ネットワークが,メタオブジェクトとしてリレーショナル分類ネットワークを成功・失敗に導くことによって,擬似ラベルの品質評価を生成するメタSREという手法を提案する。
論文 参考訳(メタデータ) (2020-10-06T03:54:11Z) - Revisiting LSTM Networks for Semi-Supervised Text Classification via
Mixed Objective Function [106.69643619725652]
我々は,単純なBiLSTMモデルであっても,クロスエントロピー損失でトレーニングした場合に,競争的な結果が得られるようなトレーニング戦略を開発する。
いくつかのベンチマークデータセット上で,テキスト分類タスクの最先端結果について報告する。
論文 参考訳(メタデータ) (2020-09-08T21:55:22Z) - Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation [54.49894381464853]
本稿では, ラベル付きデータとラベルなしデータの両方を, 知識蒸留による精度向上に活用することを提案する。
摂動に敏感なサンプルマイニングを用いたマスク誘導型平均教師フレームワークを提案する。
実験の結果,ラベル付きデータのみから学習した教師付き手法と比較して,提案手法は性能を著しく向上することがわかった。
論文 参考訳(メタデータ) (2020-07-21T13:27:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。