論文の概要: Temporal Dynamic Quantization for Diffusion Models
- arxiv url: http://arxiv.org/abs/2306.02316v2
- Date: Mon, 11 Dec 2023 17:38:36 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-13 02:33:42.833198
- Title: Temporal Dynamic Quantization for Diffusion Models
- Title(参考訳): 拡散モデルの時空間動的量子化
- Authors: Junhyuk So, Jungwon Lee, Daehyun Ahn, Hyungjun Kim, Eunhyeok Park
- Abstract要約: 本稿では,時間ステップ情報に基づいて量子化間隔を動的に調整する新しい量子化手法を提案する。
従来の動的量子化手法とは異なり、本手法は推論時に計算オーバーヘッドを伴わない。
実験により,様々なデータセットにまたがる量子拡散モデルにより,出力品質が大幅に向上したことを示す。
- 参考スコア(独自算出の注目度): 18.184163233551292
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The diffusion model has gained popularity in vision applications due to its
remarkable generative performance and versatility. However, high storage and
computation demands, resulting from the model size and iterative generation,
hinder its use on mobile devices. Existing quantization techniques struggle to
maintain performance even in 8-bit precision due to the diffusion model's
unique property of temporal variation in activation. We introduce a novel
quantization method that dynamically adjusts the quantization interval based on
time step information, significantly improving output quality. Unlike
conventional dynamic quantization techniques, our approach has no computational
overhead during inference and is compatible with both post-training
quantization (PTQ) and quantization-aware training (QAT). Our extensive
experiments demonstrate substantial improvements in output quality with the
quantized diffusion model across various datasets.
- Abstract(参考訳): 拡散モデルは、優れた生成性能と汎用性のため、視覚アプリケーションで人気を集めている。
しかし、モデルサイズと反復生成によって生じる高いストレージと計算要求は、モバイルデバイスでの使用を妨げている。
既存の量子化技術は、拡散モデルの時間的変動のユニークな性質のため、8ビットの精度でも性能を維持するのに苦労する。
本稿では、時間ステップ情報に基づいて量子化間隔を動的に調整し、出力品質を大幅に改善する新しい量子化手法を提案する。
従来の動的量子化手法とは異なり,本手法は推論時の計算オーバーヘッドがなく,後学習量子化(PTQ)と量子化対応トレーニング(QAT)の両方と互換性がある。
大規模な実験により,様々なデータセットにまたがる量子拡散モデルにより,出力品質が大幅に向上した。
関連論文リスト
- Timestep-Aware Correction for Quantized Diffusion Models [28.265582848911574]
本稿では,量子化誤差を動的に補正する量子化拡散モデルの時間ステップ対応補正法を提案する。
提案手法を低精度拡散モデルに応用することにより,出力品質の大幅な向上が期待できる。
論文 参考訳(メタデータ) (2024-07-04T13:22:31Z) - Q-DiT: Accurate Post-Training Quantization for Diffusion Transformers [45.762142897697366]
ポストトレーニング量子化(PTQ)は有望なソリューションとして登場し、事前訓練されたモデルに対するモデル圧縮と高速化推論を可能にする。
DiT量子化の研究は依然として不十分であり、既存のPTQフレームワークは偏りのある量子化に悩まされがちである。
入力チャネル間での重みとアクティベーションの有意な分散を扱うための自動量子化粒度割当と、タイムステップとサンプルの両方にわたるアクティベーション変化を適応的にキャプチャする標本ワイド動的アクティベーション量子化という、2つの重要な手法をシームレスに統合する新しいアプローチであるQ-DiTを提案する。
論文 参考訳(メタデータ) (2024-06-25T07:57:27Z) - QuEST: Low-bit Diffusion Model Quantization via Efficient Selective Finetuning [52.157939524815866]
本稿では,現行手法の有効性を損なう量子拡散モデルの3つの特性を実証的に明らかにする。
重要な時間的情報を保持する層と、ビット幅の低減に敏感な層という、2つの重要なタイプの量子化層を同定する。
提案手法は,3つの高分解能画像生成タスクに対して評価し,様々なビット幅設定で最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-02-06T03:39:44Z) - Memory-Efficient Fine-Tuning for Quantized Diffusion Model [12.875837358532422]
本稿では,量子化拡散モデルのためのメモリ効率の良い微調整手法であるTuneQDMを紹介する。
提案手法は, 単目的/多目的の両方の世代において, ベースラインを一貫して上回る。
論文 参考訳(メタデータ) (2024-01-09T03:42:08Z) - Post-training Quantization for Text-to-Image Diffusion Models with Progressive Calibration and Activation Relaxing [49.800746112114375]
本稿では,テキスト・画像拡散モデルのための学習後量子化手法(プログレッシブ・アンド・リラクシング)を提案する。
我々は,安定拡散XLの量子化を初めて達成し,その性能を維持した。
論文 参考訳(メタデータ) (2023-11-10T09:10:09Z) - Towards Accurate Post-training Quantization for Diffusion Models [73.19871905102545]
本稿では,効率的な画像生成のための拡散モデル(ADP-DM)の高精度なデータフリーポストトレーニング量子化フレームワークを提案する。
提案手法は, 拡散モデルの学習後の量子化を, 同様の計算コストで, 非常に大きなマージンで高速化する。
論文 参考訳(メタデータ) (2023-05-30T04:00:35Z) - Q-Diffusion: Quantizing Diffusion Models [52.978047249670276]
ポストトレーニング量子化(PTQ)は、他のタスクに対するゴーツー圧縮法であると考えられている。
本稿では,一意なマルチステップパイプラインとモデルアーキテクチャに適した新しいPTQ手法を提案する。
提案手法は,完全精度の非条件拡散モデルを同等の性能を維持しつつ4ビットに定量化できることを示す。
論文 参考訳(メタデータ) (2023-02-08T19:38:59Z) - ClusterQ: Semantic Feature Distribution Alignment for Data-Free
Quantization [111.12063632743013]
本稿では,ClusterQと呼ばれるデータフリーな量子化手法を提案する。
意味的特徴のクラス間分離性を高めるために,特徴分布統計をクラスタ化し,整列する。
また、クラス内分散を組み込んで、クラスワイドモードの崩壊を解決する。
論文 参考訳(メタデータ) (2022-04-30T06:58:56Z) - Post-Training Quantization for Vision Transformer [85.57953732941101]
本稿では,視覚変換器のメモリ記憶量と計算コストを削減するための学習後量子化アルゴリズムを提案する。
約8ビット量子化を用いて、ImageNetデータセット上でDeiT-Bモデルを用いて81.29%のトップ-1の精度を得ることができる。
論文 参考訳(メタデータ) (2021-06-27T06:27:22Z) - Zero-shot Adversarial Quantization [11.722728148523366]
ゼロショット逆量子化(ZAQ: Zero-shot adversarial quantization)フレームワークを提案し,効果的な不一致推定と知識伝達を容易にする。
これは、情報的で多様なデータ例を合成するためにジェネレータを駆動する、新しい2レベル不一致モデリングによって達成される。
強力なゼロショットベースラインに対してZAQの優位性を示す3つの基本的なビジョンタスクについて広範な実験を行います。
論文 参考訳(メタデータ) (2021-03-29T01:33:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。