論文の概要: Efficiency Meets Fidelity: A Novel Quantization Framework for Stable Diffusion
- arxiv url: http://arxiv.org/abs/2412.06661v2
- Date: Wed, 07 May 2025 16:57:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-08 14:59:11.758037
- Title: Efficiency Meets Fidelity: A Novel Quantization Framework for Stable Diffusion
- Title(参考訳): 安定拡散のための新しい量子化フレームワークFidelity
- Authors: Shuaiting Li, Juncan Deng, Zeyu Wang, Kedong Xu, Rongtao Deng, Hong Gu, Haibin Shen, Kejie Huang,
- Abstract要約: 安定拡散モデル(SDM)のための効率的な量子化フレームワークを提案する。
我々のフレームワークはトレーニングと推論の一貫性を同時に維持し、最適化の安定性を確保する。
本手法は,訓練時間を短縮した最先端手法よりも優れた性能を示す。
- 参考スコア(独自算出の注目度): 9.402892455344677
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text-to-image generation via Stable Diffusion models (SDM) have demonstrated remarkable capabilities. However, their computational intensity, particularly in the iterative denoising process, hinders real-time deployment in latency-sensitive applications. While Recent studies have explored post-training quantization (PTQ) and quantization-aware training (QAT) methods to compress Diffusion models, existing methods often overlook the consistency between results generated by quantized models and those from floating-point models. This consistency is paramount for professional applications where both efficiency and output reliability are essential. To ensure that quantized SDM generates high-quality and consistent images, we propose an efficient quantization framework for SDM. Our framework introduces a Serial-to-Parallel pipeline that simultaneously maintains training-inference consistency and ensures optimization stability. Building upon this foundation, we further develop several techniques including multi-timestep activation quantization, time information precalculation, inter-layer distillation, and selective freezing, to achieve high-fidelity generation in comparison to floating-point models while maintaining quantization efficiency. Through comprehensive evaluation across multiple Stable Diffusion variants (v1-4, v2-1, XL 1.0, and v3), our method demonstrates superior performance over state-of-the-art approaches with shorter training times. Under W4A8 quantization settings, we achieve significant improvements in both distribution similarity and visual fidelity, while preserving a high image quality.
- Abstract(参考訳): 安定拡散モデル(SDM)によるテキスト・ツー・イメージ生成は顕著な機能を示した。
しかし、その計算強度、特に反復的復調プロセスは、遅延に敏感なアプリケーションにおけるリアルタイムなデプロイメントを妨げる。
最近の研究では、拡散モデルを圧縮するためのポストトレーニング量子化(PTQ)と量子化対応訓練(QAT)法が検討されているが、既存の手法は量子化モデルと浮動小数点モデルによる結果との整合性を見落としていることが多い。
この一貫性は、効率性と出力信頼性の両方が不可欠であるプロフェッショナルアプリケーションにとって最重要である。
量子化SDMが高品質で一貫した画像を生成することを保証するため,SDMのための効率的な量子化フレームワークを提案する。
我々のフレームワークは、トレーニングと推論の一貫性を同時に維持し、最適化の安定性を確保するSerial-to-Parallelパイプラインを導入している。
本研究は, 多段階活性化量子化, 時間情報前処理, 層間蒸留, 選択的凍結といった技術をさらに発展させ, 量子化効率を維持しつつ浮動小数点モデルと比較して高忠実度生成を実現する。
複数の安定拡散変種(v1-4,v2-1,XL 1.0,v3)を包括的に評価することにより,訓練時間を短縮した最先端手法よりも優れた性能を示す。
W4A8量子化設定では、高い画質を維持しながら、分布の類似性と視覚的忠実性の両方に大きな改善が達成される。
関連論文リスト
- PQD: Post-training Quantization for Efficient Diffusion Models [4.809939957401427]
拡散モデル(PQD)のための新しい学習後量子化法を提案する。
提案手法は,完全精度拡散モデルを直接8ビット,4ビットモデルに量子化することができる。
論文 参考訳(メタデータ) (2024-12-30T19:55:59Z) - TCAQ-DM: Timestep-Channel Adaptive Quantization for Diffusion Models [49.65286242048452]
拡散モデル(TCAQ-DM)のためのタイムステップ・チャネル適応量子化法を提案する。
提案手法は,ほとんどの場合,最先端の手法よりも優れている。
論文 参考訳(メタデータ) (2024-12-21T16:57:54Z) - MPQ-DM: Mixed Precision Quantization for Extremely Low Bit Diffusion Models [37.061975191553]
本稿では,拡散モデルのための混合精度量子化法MPQ-DMを提案する。
重み付き外周波による量子化誤差を軽減するために,外周波混合量子化手法を提案する。
時間ステップを横断する表現を頑健に学習するために,時間-平滑な関係蒸留方式を構築した。
論文 参考訳(メタデータ) (2024-12-16T08:31:55Z) - Provable Statistical Rates for Consistency Diffusion Models [87.28777947976573]
最先端の性能にもかかわらず、拡散モデルは、多くのステップが伴うため、遅いサンプル生成で知られている。
本稿では, 整合性モデルに関する最初の統計理論に寄与し, 分散不整合最小化問題としてトレーニングを定式化している。
論文 参考訳(メタデータ) (2024-06-23T20:34:18Z) - QuEST: Low-bit Diffusion Model Quantization via Efficient Selective Finetuning [52.157939524815866]
本稿では,現行手法の有効性を損なう量子拡散モデルの3つの特性を実証的に明らかにする。
重要な時間的情報を保持する層と、ビット幅の低減に敏感な層という、2つの重要なタイプの量子化層を同定する。
提案手法は,3つの高分解能画像生成タスクに対して評価し,様々なビット幅設定で最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-02-06T03:39:44Z) - Post-training Quantization for Text-to-Image Diffusion Models with Progressive Calibration and Activation Relaxing [49.800746112114375]
本稿では,テキスト・画像拡散モデルのための学習後量子化手法(プログレッシブ・アンド・リラクシング)を提案する。
我々は,安定拡散XLの量子化を初めて達成し,その性能を維持した。
論文 参考訳(メタデータ) (2023-11-10T09:10:09Z) - EfficientDM: Efficient Quantization-Aware Fine-Tuning of Low-Bit Diffusion Models [21.17675493267517]
ポストトレーニング量子化(PTQ)と量子化学習(QAT)は、拡散モデルを圧縮・加速する2つの主要なアプローチである。
我々は、PTQのような効率でQATレベルの性能を実現するために、EfficientDMと呼ばれる低ビット拡散モデルのためのデータフリーかつパラメータ効率の微調整フレームワークを導入する。
提案手法は, PTQに基づく拡散モデルにおいて, 同様の時間とデータ効率を保ちながら, 性能を著しく向上させる。
論文 参考訳(メタデータ) (2023-10-05T02:51:53Z) - Towards Accurate Post-training Quantization for Diffusion Models [73.19871905102545]
本稿では,効率的な画像生成のための拡散モデル(ADP-DM)の高精度なデータフリーポストトレーニング量子化フレームワークを提案する。
提案手法は, 拡散モデルの学習後の量子化を, 同様の計算コストで, 非常に大きなマージンで高速化する。
論文 参考訳(メタデータ) (2023-05-30T04:00:35Z) - Q-Diffusion: Quantizing Diffusion Models [52.978047249670276]
ポストトレーニング量子化(PTQ)は、他のタスクに対するゴーツー圧縮法であると考えられている。
本稿では,一意なマルチステップパイプラインとモデルアーキテクチャに適した新しいPTQ手法を提案する。
提案手法は,完全精度の非条件拡散モデルを同等の性能を維持しつつ4ビットに定量化できることを示す。
論文 参考訳(メタデータ) (2023-02-08T19:38:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。