論文の概要: Accessible Robot Control in Mixed Reality
- arxiv url: http://arxiv.org/abs/2306.02393v1
- Date: Sun, 4 Jun 2023 16:05:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-06 18:06:29.266956
- Title: Accessible Robot Control in Mixed Reality
- Title(参考訳): 複合現実感におけるロボット制御
- Authors: Ganlin Zhang, Deheng Zhang, Longteng Duan, Guo Han
- Abstract要約: 主に身体障害者を対象とする。
ホロレン2の視線追跡および頭部運動追跡技術は、制御コマンドの送信に利用される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A novel method to control the Spot robot of Boston Dynamics by Hololens 2 is
proposed. This method is mainly designed for people with physical disabilities,
users can control the robot's movement and robot arm without using their hands.
The eye gaze tracking and head motion tracking technologies of Hololens 2 are
utilized for sending control commands. The movement of the robot would follow
the eye gaze and the robot arm would mimic the pose of the user's head. Through
our experiment, our method is comparable with the traditional control method by
joystick in both time efficiency and user experience. Demo can be found on our
project webpage: https://zhangganlin.github.io/Holo-Spot-Page/index.html
- Abstract(参考訳): hololens 2 によるボストン・ダイナミクスのスポットロボットの制御法を提案する。
この方法は、主に身体障害者向けに設計されており、ユーザーは手を使うことなくロボットの動きやロボットアームを制御できる。
ホロレン2の視線追跡および頭部運動追跡技術は、制御コマンドの送信に利用される。
ロボットの動きは視線に沿って動き、ロボットアームはユーザーの頭部のポーズを模倣する。
実験では,joystickによる従来の制御手法と比較し,時間効率とユーザエクスペリエンスの両面で比較した。
デモはプロジェクトのWebページにある。 https://zhangganlin.github.io/Holo-Spot-Page/index.html
関連論文リスト
- Unifying 3D Representation and Control of Diverse Robots with a Single Camera [48.279199537720714]
我々は,ロボットを視覚のみからモデル化し,制御することを自律的に学習するアーキテクチャであるNeural Jacobian Fieldsを紹介する。
提案手法は,正確なクローズドループ制御を実現し,各ロボットの因果動的構造を復元する。
論文 参考訳(メタデータ) (2024-07-11T17:55:49Z) - Pedipulate: Enabling Manipulation Skills using a Quadruped Robot's Leg [11.129918951736052]
脚のついたロボットは、メンテナンス、ホームサポート、探索のシナリオにおいて不可欠になる可能性がある。
本研究では,ロボットの脚を操作に用いたペディピュレーションについて検討する。
論文 参考訳(メタデータ) (2024-02-16T17:20:45Z) - ImitationNet: Unsupervised Human-to-Robot Motion Retargeting via Shared Latent Space [9.806227900768926]
本稿では,ロボットの動きに対する新しいディープラーニング手法を提案する。
本手法では,新しいロボットへの翻訳を容易にする,人間とロボットのペアデータを必要としない。
我々のモデルは、効率と精度の観点から、人間とロボットの類似性に関する既存の研究よりも優れています。
論文 参考訳(メタデータ) (2023-09-11T08:55:04Z) - Seeing-Eye Quadruped Navigation with Force Responsive Locomotion Control [2.832383052276894]
目を見つめるロボットは、視覚障害者を導くのに役立つツールであり、大きな社会的影響をもたらす可能性がある。
実際のガイドドッグ設定で頻繁に発生する、人間からの外部タグは誰も考慮しなかった。
目隠しされた人間を持つ現実の四足歩行ロボットに、我々の完全な視線ロボットシステムを実演する。
論文 参考訳(メタデータ) (2023-09-08T15:02:46Z) - Giving Robots a Hand: Learning Generalizable Manipulation with
Eye-in-Hand Human Video Demonstrations [66.47064743686953]
眼内カメラは、視覚に基づくロボット操作において、より優れたサンプル効率と一般化を可能にすることを約束している。
一方、人間がタスクを行うビデオは、ロボット遠隔操作の専門知識を欠いているため、収集コストがずっと安い。
本研究では,広範にラベルのない人間ビデオによるロボット模倣データセットを拡張し,眼球運動ポリシーの一般化を大幅に促進する。
論文 参考訳(メタデータ) (2023-07-12T07:04:53Z) - AR2-D2:Training a Robot Without a Robot [53.10633639596096]
専門的な訓練を要さないデモを収集するシステムであるAR2-D2を紹介する。
AR2-D2は、iOSアプリの形式で、あらゆるオブジェクトを操作する自身のビデオを記録するために使用することができるフレームワークである。
本研究では,本システムを用いて収集したデータにより,実物操作における行動クローニングエージェントの訓練が可能となることを示す。
論文 参考訳(メタデータ) (2023-06-23T23:54:26Z) - GenLoco: Generalized Locomotion Controllers for Quadrupedal Robots [87.32145104894754]
四足歩行ロボットのための汎用ロコモーション(GenLoco)コントローラを訓練するためのフレームワークを提案する。
本フレームワークは,多種多様な四足歩行ロボットに展開可能な汎用ロコモーションコントローラを合成する。
我々のモデルは、より一般的な制御戦略を取得し、新しいシミュレーションロボットや実世界のロボットに直接移行できることを示す。
論文 参考訳(メタデータ) (2022-09-12T15:14:32Z) - Robots with Different Embodiments Can Express and Influence Carefulness
in Object Manipulation [104.5440430194206]
本研究では,2つのロボットによるコミュニケーション意図による物体操作の知覚について検討する。
ロボットの動きを設計し,物体の搬送時に注意を喚起するか否かを判断した。
論文 参考訳(メタデータ) (2022-08-03T13:26:52Z) - Robotic Telekinesis: Learning a Robotic Hand Imitator by Watching Humans
on Youtube [24.530131506065164]
我々は、人間なら誰でもロボットの手と腕を制御できるシステムを構築します。
ロボットは、人間のオペレーターを1台のRGBカメラで観察し、その動作をリアルタイムで模倣する。
我々はこのデータを利用して、人間の手を理解するシステムを訓練し、人間のビデオストリームをスムーズで、素早く、安全に、意味論的に誘導デモに類似したロボットのハンドアーム軌道に再ターゲティングする。
論文 参考訳(メタデータ) (2022-02-21T18:59:59Z) - Morphology-Agnostic Visual Robotic Control [76.44045983428701]
MAVRICは、ロボットの形態に関する最小限の知識で機能するアプローチである。
本稿では,視覚誘導型3Dポイントリーチ,軌道追従,ロボットとロボットの模倣について紹介する。
論文 参考訳(メタデータ) (2019-12-31T15:45:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。