論文の概要: Training Like a Medical Resident: Context-Prior Learning Toward Universal Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2306.02416v3
- Date: Sun, 7 Apr 2024 03:53:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-10 05:17:18.049817
- Title: Training Like a Medical Resident: Context-Prior Learning Toward Universal Medical Image Segmentation
- Title(参考訳): 医療従事者としての研修 : ユニバーサル医療イメージセグメンテーションに向けてのコンテキスト・プライアラーニング
- Authors: Yunhe Gao, Zhuowei Li, Di Liu, Mu Zhou, Shaoting Zhang, Dimitris N. Metaxas,
- Abstract要約: 医用画像理解基盤モデルの構築を目的としたパラダイムであるユニバーサル・メディカルイメージ・セグメンテーションへのシフトを提案する。
医用画像セグメンテーションにおけるデータの異質性やアノテーションの違いに対処する新しい文脈優先学習手法であるHermesを開発した。
- 参考スコア(独自算出の注目度): 38.61227663176952
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A major focus of clinical imaging workflow is disease diagnosis and management, leading to medical imaging datasets strongly tied to specific clinical objectives. This scenario has led to the prevailing practice of developing task-specific segmentation models, without gaining insights from widespread imaging cohorts. Inspired by the training program of medical radiology residents, we propose a shift towards universal medical image segmentation, a paradigm aiming to build medical image understanding foundation models by leveraging the diversity and commonality across clinical targets, body regions, and imaging modalities. Towards this goal, we develop Hermes, a novel context-prior learning approach to address the challenges of data heterogeneity and annotation differences in medical image segmentation. In a large collection of eleven diverse datasets (2,438 3D images) across five modalities (CT, PET, T1, T2 and cine MRI) and multiple body regions, we demonstrate the merit of the universal paradigm over the traditional paradigm on addressing multiple tasks within a single model. By exploiting the synergy across tasks, Hermes achieves state-of-the-art performance on all testing datasets and shows superior model scalability. Results on two additional datasets reveals Hermes' strong performance for transfer learning, incremental learning, and generalization to downstream tasks. Hermes's learned priors demonstrate an appealing trait to reflect the intricate relations among tasks and modalities, which aligns with the established anatomical and imaging principles in radiology. The code is available: https://github.com/yhygao/universal-medical-image-segmentation.
- Abstract(参考訳): 臨床画像ワークフローの主な焦点は、疾患の診断と管理であり、特定の臨床目的に強く結びついている医療画像データセットに繋がる。
このシナリオは、広範囲にわたる画像コホートから洞察を得ることなく、タスク固有のセグメンテーションモデルを開発するという一般的な実践につながった。
本研究は, 臨床対象, 身体領域, 画像モダリティの多様性と共通性を活用し, 医用画像理解基盤モデルを構築するためのパラダイムである, 普遍的な医用画像セグメンテーションへのシフトを提案する。
この目標に向けて,医用画像セグメンテーションにおけるデータの異質性やアノテーションの違いに対処する,コンテキスト優先学習手法であるHermesを開発した。
5つのモード(CT,PET,T1,T2,cine MRI)と複数の身体領域にまたがる11の多様なデータセット(2,438個の3D画像)の大規模なコレクションにおいて、1つのモデル内の複数のタスクに対処する従来のパラダイムよりも、普遍的なパラダイムのメリットを実証する。
タスク間のシナジーを活用することで、Hermesはすべてのテストデータセットで最先端のパフォーマンスを実現し、優れたモデルスケーラビリティを示している。
2つの追加データセットの結果から、下流タスクへの移行学習、インクリメンタル学習、一般化のためのHermesの強力なパフォーマンスが明らかになった。
ヘルメスの学歴は、放射線学において確立された解剖学と画像学の原則と一致する、タスクとモダリティの間の複雑な関係を反映する魅力的な特徴を示している。
コードは、https://github.com/yhygao/Universal-medical-image-segmentation.comで入手できる。
関連論文リスト
- Autoregressive Sequence Modeling for 3D Medical Image Representation [48.706230961589924]
本稿では, 自己回帰シーケンス事前学習フレームワークを用いて, 3次元医用画像表現を学習するための先駆的手法を提案する。
我々は,空間的,コントラスト的,意味的相関に基づく様々な3次元医用画像にアプローチし,トークンシーケンス内の相互接続された視覚トークンとして扱う。
論文 参考訳(メタデータ) (2024-09-13T10:19:10Z) - Do Vision Foundation Models Enhance Domain Generalization in Medical Image Segmentation? [10.20366295974822]
本稿では,2つの最先端デコーダヘッドであるHSAMとHQSAMの要素を統合し,セグメンテーション性能を向上させる新しいデコーダヘッドアーキテクチャであるHQHSAMを紹介する。
種々の解剖学やモダリティを含む複数のデータセットに対する実験により,FM,特にHQHSAMデコードヘッドを用いて,医用画像分割のための領域一般化が向上したことが明らかとなった。
論文 参考訳(メタデータ) (2024-09-12T11:41:35Z) - MOSMOS: Multi-organ segmentation facilitated by medical report supervision [10.396987980136602]
マルチオーガンスーパービジョン(MOS)のための新しい事前学習・微調整フレームワークを提案する。
具体的には、まず、トレーニング前の段階で、医用画像とレポートのペアを合わせるために、グローバルコントラスト学習を導入する。
さらに,画像画素と臓器タグ間の意味的対応を暗黙的に学習するために,マルチラベル認識を活用する。
論文 参考訳(メタデータ) (2024-09-04T03:46:17Z) - Unlocking the Power of Spatial and Temporal Information in Medical Multimodal Pre-training [99.2891802841936]
我々は,空間的・時間的微粒なモデリングのためのMed-STフレームワークを提案する。
空間モデリングでは、Med-STはMixture of View Expert (MoVE)アーキテクチャを使用して、正面と横の両方のビューから異なる視覚的特徴を統合する。
時間的モデリングのために,フォワードマッピング分類 (FMC) とリバースマッピング回帰 (RMR) による新たな双方向サイクル整合性目標を提案する。
論文 参考訳(メタデータ) (2024-05-30T03:15:09Z) - Unified Medical Image Pre-training in Language-Guided Common Semantic Space [39.61770813855078]
我々はUnified Medical Image Pre-Trainingフレームワーク(UniMedI)を提案する。
UniMedIは、診断レポートを一般的な意味空間として使用し、医療画像の多様なモダリティの統一表現を作成する。
10種類のデータセットにまたがる2次元画像と3次元画像の性能評価を行った。
論文 参考訳(メタデータ) (2023-11-24T22:01:12Z) - From CNN to Transformer: A Review of Medical Image Segmentation Models [7.3150850275578145]
医用画像セグメンテーションのための深層学習が主流となっている。
本稿では,近年最も代表的な4つの医用画像セグメンテーションモデルについて調査する。
理論的にこれらのモデルの特徴を解析し、2つのベンチマークデータセット上でそれらの性能を定量的に評価する。
論文 参考訳(メタデータ) (2023-08-10T02:48:57Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - Mine yOur owN Anatomy: Revisiting Medical Image Segmentation with Extremely Limited Labels [54.58539616385138]
我々は、Mine yOur owN Anatomy (MONA) と呼ばれる、新しい半教師付き2次元医用画像セグメンテーションフレームワークを紹介する。
まず、先行研究では、すべてのピクセルがモデルトレーニングに等しく重要であると論じており、我々はこの1つだけで意味のある解剖学的特徴を定義できないことを経験的に観察している。
第2に,医療画像を解剖学的特徴の集合に分解できるモデルを構築する。
論文 参考訳(メタデータ) (2022-09-27T15:50:31Z) - Generalizable multi-task, multi-domain deep segmentation of sparse
pediatric imaging datasets via multi-scale contrastive regularization and
multi-joint anatomical priors [0.41998444721319217]
本稿では,複数のデータセットに対して単一セグメンテーションネットワークを最適化する,新しいマルチタスク・マルチドメイン学習フレームワークを提案する。
足関節, 膝関節, 肩関節の3つの軽度, 小児画像データセットを用いた骨分節術の成績について検討した。
論文 参考訳(メタデータ) (2022-07-27T12:59:16Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。