論文の概要: Enhancing Point Annotations with Superpixel and Confidence Learning
Guided for Improving Semi-Supervised OCT Fluid Segmentation
- arxiv url: http://arxiv.org/abs/2306.02582v3
- Date: Thu, 30 Nov 2023 12:10:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-01 20:20:19.774674
- Title: Enhancing Point Annotations with Superpixel and Confidence Learning
Guided for Improving Semi-Supervised OCT Fluid Segmentation
- Title(参考訳): 半教師付きOCT流体セグメンテーション改善のための超画素・信頼学習によるポイントアノテーションの強化
- Authors: Tengjin Weng, Yang Shen, Kai Jin, Zhiming Cheng, Yunxiang Li, Gewen
Zhang, Shuai Wang and Yaqi Wang
- Abstract要約: Superpixel and Confident Learning Guide Point s Network (SCLGPA-Net)。
Superpixel-Guided Pseudo-Label Generation (SGPLG)モジュールは擬似ラベルとピクセルレベルのラベル信頼マップを生成する。
CLGLR(Confident Learning Guided Label Refinement)モジュールは、擬似ラベル内のエラー情報を識別し、さらなる改善につながる。
- 参考スコア(独自算出の注目度): 17.85298271262749
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automatic segmentation of fluid in Optical Coherence Tomography (OCT) images
is beneficial for ophthalmologists to make an accurate diagnosis. Although
semi-supervised OCT fluid segmentation networks enhance their performance by
introducing additional unlabeled data, the performance enhancement is limited.
To address this, we propose Superpixel and Confident Learning Guide Point
Annotations Network (SCLGPA-Net) based on the teacher-student architecture,
which can learn OCT fluid segmentation from limited fully-annotated data and
abundant point-annotated data. Specifically, we use points to annotate fluid
regions in unlabeled OCT images and the Superpixel-Guided Pseudo-Label
Generation (SGPLG) module generates pseudo-labels and pixel-level label trust
maps from the point annotations. The label trust maps provide an indication of
the reliability of the pseudo-labels. Furthermore, we propose the Confident
Learning Guided Label Refinement (CLGLR) module identifies error information in
the pseudo-labels and leads to further refinement. Experiments on the RETOUCH
dataset show that we are able to reduce the need for fully-annotated data by
94.22\%, closing the gap with the best fully supervised baselines to a mean IoU
of only 2\%. Furthermore, We constructed a private 2D OCT fluid segmentation
dataset for evaluation. Compared with other methods, comprehensive experimental
results demonstrate that the proposed method can achieve excellent performance
in OCT fluid segmentation.
- Abstract(参考訳): 光コヒーレンス・トモグラフィー(OCT)画像における流体の自動分画は眼科医が正確な診断に有用である。
半教師付きOCT流体セグメンテーションネットワークは、追加のラベル付きデータを導入して性能を向上するが、性能向上は限定的である。
そこで本研究では,教師-学生アーキテクチャに基づくSuperpixel and Confident Learning Guide Point Annotations Network (SCLGPA-Net)を提案する。
具体的には、未ラベルOCT画像中の流体領域に注釈をつけるためにポイントを使用し、Superpixel-Guided Pseudo-Label Generation (SGPLG)モジュールは、ポイントアノテーションから擬似ラベルとピクセルレベルのラベル信頼マップを生成する。
ラベル信頼マップは、擬似ラベルの信頼性を示す。
さらに,疑似ラベルの誤り情報を識別するCLGLR(Confident Learning Guided Label Refinement)モジュールを提案する。
RETOUCHデータセットの実験では、完全なアノテーション付きデータの必要性を94.22\%削減し、最高の完全な教師付きベースラインとのギャップを2\%の平均IoUに縮めることができた。
さらに,評価のための2次元CT流体セグメンテーションデータセットを構築した。
他の方法と比較して,提案手法がOCT流体セグメンテーションにおいて優れた性能を発揮することを示す。
関連論文リスト
- SP${ }^3$ : Superpixel-propagated pseudo-label learning for weakly semi-supervised medical image segmentation [10.127428696255848]
弱半教師付きセグメンテーションにおいて,超Pixel-Propagated Pseudo-label Learning法を提案する。
本手法は,WSSS設定下での腫瘍と臓器のセグメンテーションデータセットの最先端性能を実現する。
論文 参考訳(メタデータ) (2024-11-18T15:14:36Z) - Pseudo Label-Guided Data Fusion and Output Consistency for
Semi-Supervised Medical Image Segmentation [9.93871075239635]
より少ないアノテーションで医用画像のセグメンテーションを行うための平均教師ネットワーク上に構築されたPLGDFフレームワークを提案する。
本稿では,ラベル付きデータとラベルなしデータを組み合わせてデータセットを効果的に拡張する,新しい擬似ラベル利用方式を提案する。
本フレームワークは,最先端の6つの半教師あり学習手法と比較して,優れた性能が得られる。
論文 参考訳(メタデータ) (2023-11-17T06:36:43Z) - Dual-Decoder Consistency via Pseudo-Labels Guided Data Augmentation for
Semi-Supervised Medical Image Segmentation [13.707121013895929]
本稿では, Pseudo-Labels Guided Data Augmentation を用いた新しい半教師付き学習手法である Dual-Decoder Consistency を提案する。
我々は、同じエンコーダを維持しながら、生徒と教師のネットワークに異なるデコーダを使用します。
ラベルのないデータから学習するために、教師ネットワークによって生成された擬似ラベルを作成し、擬似ラベルでトレーニングデータを増強する。
論文 参考訳(メタデータ) (2023-08-31T09:13:34Z) - Dense FixMatch: a simple semi-supervised learning method for pixel-wise
prediction tasks [68.36996813591425]
Dense FixMatchは,高密度かつ構造化された予測タスクのオンライン半教師付き学習のための簡易な手法である。
我々は、擬似ラベルにマッチング操作を追加することにより、画像分類を超えた半教師付き学習問題にFixMatchの適用を可能にする。
Dense FixMatchは、ラベル付きデータのみを使用して教師付き学習と比較すると、結果を著しく改善し、ラベル付きサンプルの1/4でそのパフォーマンスに近づいた。
論文 参考訳(メタデータ) (2022-10-18T15:02:51Z) - Incorporating Semi-Supervised and Positive-Unlabeled Learning for
Boosting Full Reference Image Quality Assessment [73.61888777504377]
フル参照(FR)画像品質評価(IQA)は、その知覚的差異をプリズム品質基準で測定することにより、歪み画像の視覚的品質を評価する。
ラベルなしデータは、画像劣化または復元プロセスから容易に収集することができ、ラベルなしのトレーニングデータを利用してFR-IQA性能を高めることを奨励する。
本稿では, 半教師付き, 正の未ラベル学習(PU)を用いて, ラベルなしデータを活用し, オフレーヤの悪影響を軽減することを提案する。
論文 参考訳(メタデータ) (2022-04-19T09:10:06Z) - Nuclei Segmentation with Point Annotations from Pathology Images via
Self-Supervised Learning and Co-Training [44.13451004973818]
核分割のための弱い教師付き学習法を提案する。
粗いピクセルレベルのラベルは、ボロノイ図に基づく点アノテーションから導かれる。
病理画像の核分割に適した自己教師付き視覚表現学習法を提案する。
論文 参考訳(メタデータ) (2022-02-16T17:08:44Z) - Improving Semi-Supervised and Domain-Adaptive Semantic Segmentation with
Self-Supervised Depth Estimation [94.16816278191477]
本稿では,セミアダプティブなセマンティックセマンティックセマンティックセグメンテーションのためのフレームワークを提案する。
ラベルのない画像シーケンスでのみ訓練された自己教師付き単眼深度推定によって強化される。
提案したモデルをCityscapesデータセット上で検証する。
論文 参考訳(メタデータ) (2021-08-28T01:33:38Z) - Every Annotation Counts: Multi-label Deep Supervision for Medical Image
Segmentation [85.0078917060652]
この障壁を克服する半弱教師付きセグメンテーションアルゴリズムを提案する。
このアプローチは,深層指導と生徒・教師モデルの新しい定式化に基づいている。
我々の新しいセグメンテーションのトレーニング体制は、完全にラベル付けされ、バウンディングボックスでマークされた画像、単にグローバルラベル、あるいは全くないイメージを柔軟に活用することで、高価なラベルの要件を94.22%削減することができる。
論文 参考訳(メタデータ) (2021-04-27T14:51:19Z) - Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation [54.49894381464853]
本稿では, ラベル付きデータとラベルなしデータの両方を, 知識蒸留による精度向上に活用することを提案する。
摂動に敏感なサンプルマイニングを用いたマスク誘導型平均教師フレームワークを提案する。
実験の結果,ラベル付きデータのみから学習した教師付き手法と比較して,提案手法は性能を著しく向上することがわかった。
論文 参考訳(メタデータ) (2020-07-21T13:27:09Z) - ATSO: Asynchronous Teacher-Student Optimization for Semi-Supervised
Medical Image Segmentation [99.90263375737362]
教師-学生最適化の非同期版であるATSOを提案する。
ATSOはラベルのないデータを2つのサブセットに分割し、モデルの微調整に1つのサブセットを交互に使用し、他のサブセットのラベルを更新する。
医用画像のセグメンテーションデータセットを2つ評価し,様々な半教師付き環境において優れた性能を示す。
論文 参考訳(メタデータ) (2020-06-24T04:05:12Z) - Learning to segment from misaligned and partial labels [0.0]
アーバン以外の多くの設定は、正確なセグメンテーションに必要な基盤構造を欠いている。
OpenStreetMaps (OSM)のようなオープンソースのインフラストラクチャアノテーションがこの問題を代表している。
本稿では,不整合アノテーションと欠落アノテーションを付与した画素画像分割を改良した,新規で一般化可能な2段階のフレームワークを提案する。
論文 参考訳(メタデータ) (2020-05-27T06:02:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。