論文の概要: Towards Better Explanations for Object Detection
- arxiv url: http://arxiv.org/abs/2306.02744v1
- Date: Mon, 5 Jun 2023 09:52:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-06 15:51:35.701015
- Title: Towards Better Explanations for Object Detection
- Title(参考訳): オブジェクト検出のためのより良い説明に向けて
- Authors: Van Binh Truong, Truong Thanh Hung Nguyen, Vo Thanh Khang Nguyen, Quoc
Khanh Nguyen, Quoc Hung Cao
- Abstract要約: 本稿では,D-CLOSEと呼ばれるオブジェクト検出モデルについて,その決定を説明する手法を提案する。
我々は,YOLOXモデルを用いてMS-COCOデータセットの試験を行い,本手法がD-RISEより優れていることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in Artificial Intelligence (AI) technology have promoted
their use in almost every field. The growing complexity of deep neural networks
(DNNs) makes it increasingly difficult and important to explain the inner
workings and decisions of the network. However, most current techniques for
explaining DNNs focus mainly on interpreting classification tasks. This paper
proposes a method to explain the decision for any object detection model called
D-CLOSE. To closely track the model's behavior, we used multiple levels of
segmentation on the image and a process to combine them. We performed tests on
the MS-COCO dataset with the YOLOX model, which shows that our method
outperforms D-RISE and can give a better quality and less noise explanation.
- Abstract(参考訳): 人工知能(AI)技術の最近の進歩は、ほぼすべての分野における利用を促進している。
ディープニューラルネットワーク(DNN)の複雑さの増大により、ネットワークの内部動作と決定を説明することがますます難しく、重要になる。
しかし、近年のDNNの説明技術のほとんどは、主に分類タスクの解釈に重点を置いている。
本稿では,d-closeと呼ばれる任意の物体検出モデルの決定を説明する手法を提案する。
モデルの振る舞いを密に追跡するために、画像上の複数のレベルのセグメンテーションとそれらを組み合わせるプロセスを使いました。
我々は,YOLOXモデルを用いてMS-COCOデータセットの試験を行い,提案手法がD-RISEより優れ,品質が向上し,ノイズ説明が低くなることを示した。
関連論文リスト
- CAManim: Animating end-to-end network activation maps [0.2509487459755192]
本稿では,CNN予測に対するエンドユーザの理解の拡大と集中を目的とした,CAManimという新しいXAI可視化手法を提案する。
また,Remove and Debias(ROAD)尺度に基づいて,新たな定量的評価法を提案する。
これは、解釈可能で堅牢で透明なモデルアセスメント方法論に対する需要の増加に対応するために、先行研究に基づいている。
論文 参考訳(メタデータ) (2023-12-19T01:07:36Z) - Interpretability of an Interaction Network for identifying $H
\rightarrow b\bar{b}$ jets [4.553120911976256]
近年、ディープニューラルネットワークに基づくAIモデルは、これらのアプリケーションの多くで人気が高まっている。
我々は、高揚した$Hto bbarb$ jetを識別するために設計されたインタラクションネットワーク(IN)モデルを調べることで、AIモデルの解釈可能性を検討する。
さらに、INモデル内の隠れレイヤの活動を、ニューラルアクティベーションパターン(NAP)ダイアグラムとして記述する。
論文 参考訳(メタデータ) (2022-11-23T08:38:52Z) - A Detailed Study of Interpretability of Deep Neural Network based Top
Taggers [3.8541104292281805]
説明可能なAI(XAI)の最近の進歩により、研究者はディープニューラルネットワーク(DNN)の内部動作を探索できる。
大型ハドロン衝突型加速器(LHC)における高エネルギー陽子-陽子衝突におけるトップクォーク崩壊からのジェットの解釈可能性について検討する。
本研究は,既存のXAI手法の大きな落とし穴を明らかにし,これらのモデルの一貫性と意味のある解釈をいかに克服できるかを説明する。
論文 参考訳(メタデータ) (2022-10-09T23:02:42Z) - Adaptive Convolutional Dictionary Network for CT Metal Artifact
Reduction [62.691996239590125]
本稿では,金属人工物削減のための適応畳み込み辞書ネットワーク(ACDNet)を提案する。
我々のACDNetは、トレーニングデータを介して、アーティファクトフリーCT画像の事前を自動で学習し、入力されたCT画像ごとに表現カーネルを適応的に調整することができる。
本手法は,モデルに基づく手法の明確な解釈可能性を継承し,学習に基づく手法の強力な表現能力を維持する。
論文 参考訳(メタデータ) (2022-05-16T06:49:36Z) - Comparison Analysis of Traditional Machine Learning and Deep Learning
Techniques for Data and Image Classification [62.997667081978825]
本研究の目的は、コンピュータビジョン2次元オブジェクト分類タスクに使用される最も一般的な機械学習およびディープラーニング技術を分析し比較することである。
まず、視覚語モデルと深部畳み込みニューラルネットワーク(DCNN)の理論的背景を示す。
次に、Bag of Visual Wordsモデル、VGG16 CNN Architectureを実装します。
論文 参考訳(メタデータ) (2022-04-11T11:34:43Z) - Scene Understanding for Autonomous Driving [0.0]
Detectron2で提示されたRetinaNet, Faster R-CNN, Mask R-CNNの異なる構成の挙動を検討する。
関心のあるデータセット上でこれらのモデルを微調整した後、パフォーマンスの大幅な改善を観察します。
文脈外のデータセットを用いて異常な状況下で推論を行い、興味深い結果を示す。
論文 参考訳(メタデータ) (2021-05-11T09:50:05Z) - Densely Nested Top-Down Flows for Salient Object Detection [137.74130900326833]
本稿では,物体検出におけるトップダウンモデリングの役割を再考する。
密度の高いトップダウンフロー(DNTDF)ベースのフレームワークを設計する。
DNTDFのすべての段階において、高いレベルの特徴はプログレッシブ圧縮ショートカットパス(PCSP)を介して読み込まれる。
論文 参考訳(メタデータ) (2021-02-18T03:14:02Z) - Explainability in Deep Reinforcement Learning [68.8204255655161]
説明可能な強化学習(XRL)の実現に向けての最近の成果を概観する。
エージェントの振る舞いを正当化し、説明することが不可欠である重要な状況において、RLモデルのより良い説明可能性と解釈性は、まだブラックボックスと見なされているものの内部動作に関する科学的洞察を得るのに役立つ。
論文 参考訳(メタデータ) (2020-08-15T10:11:42Z) - Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey [77.99182201815763]
ディープニューラルネットワーク(DNN)は多くの異なる問題設定において最先端の結果を達成する。
DNNはしばしばブラックボックスシステムとして扱われ、評価と検証が複雑になる。
コンピュータビジョンタスクにおける畳み込みニューラルネットワーク(CNN)の成功に触発された、有望な分野のひとつは、対称幾何学的変換に関する知識を取り入れることである。
論文 参考訳(メタデータ) (2020-06-30T14:56:05Z) - An Adversarial Approach for Explaining the Predictions of Deep Neural
Networks [9.645196221785694]
本稿では,敵対的機械学習を用いて,ディープニューラルネットワーク(DNN)の予測を説明する新しいアルゴリズムを提案する。
提案手法は,DNNに対する敵攻撃の挙動に基づいて,入力特徴の相対的重要性を推定する。
分析により、一貫性のある効率的な説明が得られます。
論文 参考訳(メタデータ) (2020-05-20T18:06:53Z) - Architecture Disentanglement for Deep Neural Networks [174.16176919145377]
ディープニューラルネットワーク(DNN)の内部動作を説明するために,ニューラルアーキテクチャ・ディコンタングルメント(NAD)を導入する。
NADは、訓練済みのDNNを独立したタスクに従ってサブアーキテクチャに切り離すことを学び、推論プロセスを記述する情報フローを形成する。
その結果、誤分類された画像は、タスクサブアーキテクチャーに正しいサブアーキテクチャーに割り当てられる確率が高いことが示された。
論文 参考訳(メタデータ) (2020-03-30T08:34:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。