Tackling Non-Stationarity in Reinforcement Learning via Causal-Origin Representation
- URL: http://arxiv.org/abs/2306.02747v3
- Date: Sun, 2 Jun 2024 06:32:12 GMT
- Title: Tackling Non-Stationarity in Reinforcement Learning via Causal-Origin Representation
- Authors: Wanpeng Zhang, Yilin Li, Boyu Yang, Zongqing Lu,
- Abstract summary: In real-world scenarios, the application of reinforcement learning is significantly challenged by complex non-stationarity.
Most existing methods attempt to model changes in the environment explicitly, often requiring impractical prior knowledge of environments.
We propose a new perspective, positing that non-stationarity can propagate and accumulate through complex causal relationships during state transitions.
- Score: 33.591883737167194
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In real-world scenarios, the application of reinforcement learning is significantly challenged by complex non-stationarity. Most existing methods attempt to model changes in the environment explicitly, often requiring impractical prior knowledge of environments. In this paper, we propose a new perspective, positing that non-stationarity can propagate and accumulate through complex causal relationships during state transitions, thereby compounding its sophistication and affecting policy learning. We believe that this challenge can be more effectively addressed by implicitly tracing the causal origin of non-stationarity. To this end, we introduce the Causal-Origin REPresentation (COREP) algorithm. COREP primarily employs a guided updating mechanism to learn a stable graph representation for the state, termed as causal-origin representation. By leveraging this representation, the learned policy exhibits impressive resilience to non-stationarity. We supplement our approach with a theoretical analysis grounded in the causal interpretation for non-stationary reinforcement learning, advocating for the validity of the causal-origin representation. Experimental results further demonstrate the superior performance of COREP over existing methods in tackling non-stationarity problems.
Related papers
- Causal Temporal Representation Learning with Nonstationary Sparse Transition [22.6420431022419]
Causal Temporal Representation Learning (Ctrl) methods aim to identify the temporal causal dynamics of complex nonstationary temporal sequences.
This work adopts a sparse transition assumption, aligned with intuitive human understanding, and presents identifiability results from a theoretical perspective.
We introduce a novel framework, Causal Temporal Representation Learning with Nonstationary Sparse Transition (CtrlNS), designed to leverage the constraints on transition sparsity.
arXiv Detail & Related papers (2024-09-05T00:38:27Z) - Sequential Representation Learning via Static-Dynamic Conditional Disentanglement [58.19137637859017]
This paper explores self-supervised disentangled representation learning within sequential data, focusing on separating time-independent and time-varying factors in videos.
We propose a new model that breaks the usual independence assumption between those factors by explicitly accounting for the causal relationship between the static/dynamic variables.
Experiments show that the proposed approach outperforms previous complex state-of-the-art techniques in scenarios where the dynamics of a scene are influenced by its content.
arXiv Detail & Related papers (2024-08-10T17:04:39Z) - CaRiNG: Learning Temporal Causal Representation under Non-Invertible Generation Process [22.720927418184672]
We propose a principled approach to learn the CAusal RepresentatIon of Non-invertible Generative temporal data with identifiability guarantees.
Specifically, we utilize temporal context to recover lost latent information and apply the conditions in our theory to guide the training process.
arXiv Detail & Related papers (2024-01-25T22:01:07Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - Reinforcement Learning in System Identification [0.0]
System identification, also known as learning forward models, transfer functions, system dynamics, etc., has a long tradition both in science and engineering.
Here we explore the use of Reinforcement Learning in this problem.
We elaborate on why and how this problem fits naturally and sound as a Reinforcement Learning problem, and present some experimental results that demonstrate RL is a promising technique to solve these kind of problems.
arXiv Detail & Related papers (2022-12-14T09:20:42Z) - Principled Knowledge Extrapolation with GANs [92.62635018136476]
We study counterfactual synthesis from a new perspective of knowledge extrapolation.
We show that an adversarial game with a closed-form discriminator can be used to address the knowledge extrapolation problem.
Our method enjoys both elegant theoretical guarantees and superior performance in many scenarios.
arXiv Detail & Related papers (2022-05-21T08:39:42Z) - Towards Robust Bisimulation Metric Learning [3.42658286826597]
Bisimulation metrics offer one solution to representation learning problem.
We generalize value function approximation bounds for on-policy bisimulation metrics to non-optimal policies.
We find that these issues stem from an underconstrained dynamics model and an unstable dependence of the embedding norm on the reward signal.
arXiv Detail & Related papers (2021-10-27T00:32:07Z) - Exploratory State Representation Learning [63.942632088208505]
We propose a new approach called XSRL (eXploratory State Representation Learning) to solve the problems of exploration and SRL in parallel.
On one hand, it jointly learns compact state representations and a state transition estimator which is used to remove unexploitable information from the representations.
On the other hand, it continuously trains an inverse model, and adds to the prediction error of this model a $k$-step learning progress bonus to form the objective of a discovery policy.
arXiv Detail & Related papers (2021-09-28T10:11:07Z) - Supercharging Imbalanced Data Learning With Energy-based Contrastive
Representation Transfer [72.5190560787569]
In computer vision, learning from long tailed datasets is a recurring theme, especially for natural image datasets.
Our proposal posits a meta-distributional scenario, where the data generating mechanism is invariant across the label-conditional feature distributions.
This allows us to leverage a causal data inflation procedure to enlarge the representation of minority classes.
arXiv Detail & Related papers (2020-11-25T00:13:11Z) - Deep Reinforcement Learning amidst Lifelong Non-Stationarity [67.24635298387624]
We show that an off-policy RL algorithm can reason about and tackle lifelong non-stationarity.
Our method leverages latent variable models to learn a representation of the environment from current and past experiences.
We also introduce several simulation environments that exhibit lifelong non-stationarity, and empirically find that our approach substantially outperforms approaches that do not reason about environment shift.
arXiv Detail & Related papers (2020-06-18T17:34:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.