Neural Radiance Fields (NeRFs): A Review and Some Recent Developments
- URL: http://arxiv.org/abs/2305.00375v1
- Date: Sun, 30 Apr 2023 03:23:58 GMT
- Title: Neural Radiance Fields (NeRFs): A Review and Some Recent Developments
- Authors: Mohamed Debbagh
- Abstract summary: Neural Radiance Field (NeRF) is a framework that represents a 3D scene in the weights of a fully connected neural network.
NeRFs have become a popular field of research as recent developments have been made that expand the performance and capabilities of the base framework.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Neural Radiance Field (NeRF) is a framework that represents a 3D scene in the
weights of a fully connected neural network, known as the Multi-Layer
Perception(MLP). The method was introduced for the task of novel view synthesis
and is able to achieve state-of-the-art photorealistic image renderings from a
given continuous viewpoint. NeRFs have become a popular field of research as
recent developments have been made that expand the performance and capabilities
of the base framework. Recent developments include methods that require less
images to train the model for view synthesis as well as methods that are able
to generate views from unconstrained and dynamic scene representations.
Related papers
- Gear-NeRF: Free-Viewpoint Rendering and Tracking with Motion-aware Spatio-Temporal Sampling [70.34875558830241]
We present a way for learning a-temporal (4D) embedding, based on semantic semantic gears to allow for stratified modeling of dynamic regions of rendering the scene.
At the same time, almost for free, our tracking approach enables free-viewpoint of interest - a functionality not yet achieved by existing NeRF-based methods.
arXiv Detail & Related papers (2024-06-06T03:37:39Z) - PNeRFLoc: Visual Localization with Point-based Neural Radiance Fields [54.8553158441296]
We propose a novel visual localization framework, ie, PNeRFLoc, based on a unified point-based representation.
On the one hand, PNeRFLoc supports the initial pose estimation by matching 2D and 3D feature points.
On the other hand, it also enables pose refinement with novel view synthesis using rendering-based optimization.
arXiv Detail & Related papers (2023-12-17T08:30:00Z) - ReconFusion: 3D Reconstruction with Diffusion Priors [104.73604630145847]
We present ReconFusion to reconstruct real-world scenes using only a few photos.
Our approach leverages a diffusion prior for novel view synthesis, trained on synthetic and multiview datasets.
Our method synthesizes realistic geometry and texture in underconstrained regions while preserving the appearance of observed regions.
arXiv Detail & Related papers (2023-12-05T18:59:58Z) - Self-Evolving Neural Radiance Fields [31.124406548504794]
We propose a novel framework, dubbed Self-Evolving Neural Radiance Fields (SE-NeRF), that applies a self-training framework to neural radiance field (NeRF)
We formulate few-shot NeRF into a teacher-student framework to guide the network to learn a more robust representation of the scene.
We show and evaluate that applying our self-training framework to existing models improves the quality of the rendered images and achieves state-of-the-art performance in multiple settings.
arXiv Detail & Related papers (2023-12-02T02:28:07Z) - CeRF: Convolutional Neural Radiance Fields for New View Synthesis with Derivatives of Ray Modeling [16.788271424754488]
We introduce the Conal Neural Radiance Fields to model the derivatives of radiance along rays.
Based on 1D convolutional operations, our proposed method effectively extracts potential ray representations through a structured neural network architecture.
arXiv Detail & Related papers (2023-07-14T02:26:05Z) - BeyondPixels: A Comprehensive Review of the Evolution of Neural Radiance Fields [1.1531932979578041]
NeRF, short for Neural Radiance Fields, is a recent innovation that uses AI algorithms to create 3D objects from 2D images.
This survey reviews recent advances in NeRF and categorizes them according to their architectural designs.
arXiv Detail & Related papers (2023-06-05T16:10:21Z) - Template-free Articulated Neural Point Clouds for Reposable View
Synthesis [11.535440791891217]
We present a novel method to jointly learn a Dynamic NeRF and an associated skeletal model from even sparse multi-view video.
Our forward-warping approach achieves state-of-the-art visual fidelity when synthesizing novel views and poses.
arXiv Detail & Related papers (2023-05-30T14:28:08Z) - BARF: Bundle-Adjusting Neural Radiance Fields [104.97810696435766]
We propose Bundle-Adjusting Neural Radiance Fields (BARF) for training NeRF from imperfect camera poses.
BARF can effectively optimize the neural scene representations and resolve large camera pose misalignment at the same time.
This enables view synthesis and localization of video sequences from unknown camera poses, opening up new avenues for visual localization systems.
arXiv Detail & Related papers (2021-04-13T17:59:51Z) - MVSNeRF: Fast Generalizable Radiance Field Reconstruction from
Multi-View Stereo [52.329580781898116]
We present MVSNeRF, a novel neural rendering approach that can efficiently reconstruct neural radiance fields for view synthesis.
Unlike prior works on neural radiance fields that consider per-scene optimization on densely captured images, we propose a generic deep neural network that can reconstruct radiance fields from only three nearby input views via fast network inference.
arXiv Detail & Related papers (2021-03-29T13:15:23Z) - pixelNeRF: Neural Radiance Fields from One or Few Images [20.607712035278315]
pixelNeRF is a learning framework that predicts a continuous neural scene representation conditioned on one or few input images.
We conduct experiments on ShapeNet benchmarks for single image novel view synthesis tasks with held-out objects.
In all cases, pixelNeRF outperforms current state-of-the-art baselines for novel view synthesis and single image 3D reconstruction.
arXiv Detail & Related papers (2020-12-03T18:59:54Z) - D-NeRF: Neural Radiance Fields for Dynamic Scenes [72.75686949608624]
We introduce D-NeRF, a method that extends neural radiance fields to a dynamic domain.
D-NeRF reconstructs images of objects under rigid and non-rigid motions from a camera moving around the scene.
We demonstrate the effectiveness of our approach on scenes with objects under rigid, articulated and non-rigid motions.
arXiv Detail & Related papers (2020-11-27T19:06:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.