論文の概要: Hiding in Plain Sight: Disguising Data Stealing Attacks in Federated
Learning
- arxiv url: http://arxiv.org/abs/2306.03013v1
- Date: Mon, 5 Jun 2023 16:29:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-06 13:53:13.007029
- Title: Hiding in Plain Sight: Disguising Data Stealing Attacks in Federated
Learning
- Title(参考訳): 素直に隠れる: 連合学習におけるデータ盗み攻撃
- Authors: Kostadin Garov, Dimitar I. Dimitrov, Nikola Jovanovi\'c, Martin Vechev
- Abstract要約: 我々は,MS攻撃のクライアント側検出の問題点について検討した。
我々は,すべてのデシラタを満足する新たな攻撃フレームワークであるSEERを提案する。
私たちの研究は、MS攻撃のより原則化された治療に向けた、有望な第一歩です。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Malicious server (MS) attacks have enabled the scaling of data stealing in
federated learning to large batch sizes and secure aggregation, settings
previously considered private. However, many concerns regarding client-side
detectability of MS attacks were raised, questioning their practicality once
they are publicly known. In this work, for the first time, we thoroughly study
the problem of client-side detectability.We demonstrate that most prior MS
attacks, which fundamentally rely on one of two key principles, are detectable
by principled client-side checks. Further, we formulate desiderata for
practical MS attacks and propose SEER, a novel attack framework that satisfies
all desiderata, while stealing user data from gradients of realistic networks,
even for large batch sizes (up to 512 in our experiments) and under secure
aggregation. The key insight of SEER is the use of a secret decoder, which is
jointly trained with the shared model. Our work represents a promising first
step towards more principled treatment of MS attacks, paving the way for
realistic data stealing that can compromise user privacy in real-world
deployments.
- Abstract(参考訳): 悪意のあるサーバ(ms)攻撃は、フェデレーション学習におけるデータの盗みのスケーリングを可能にし、大規模なバッチサイズとセキュアアグリゲーションを可能にした。
しかし、MS攻撃のクライアント側検出性に関する多くの懸念が提起され、公開後にその実用性に疑問が呈された。
本研究では,クライアントサイド検出可能性の問題を初めて徹底的に検討し,従来のms攻撃のほとんどが,基本的に2つの重要な原則の1つに依存しており,クライアントサイドチェックの原則によって検出可能であることを実証する。
さらに,現実的なネットワークの勾配からユーザデータを盗むと同時に,大規模なバッチサイズ(実験では最大512個まで)やセキュアなアグリゲーションの下でも,すべてのデシダータを満足する新たな攻撃フレームワークであるSEERを提案する。
SEERの重要な洞察は、共有モデルと共同でトレーニングされたシークレットデコーダを使用することである。
私たちの作業は、MS攻撃をより原則的に扱うための、有望な第一歩であり、現実のデプロイメントにおけるユーザのプライバシを損なうような、現実的なデータ盗難への道を開くものです。
関連論文リスト
- Rethinking the Vulnerabilities of Face Recognition Systems:From a Practical Perspective [53.24281798458074]
顔認識システム(FRS)は、監視やユーザー認証を含む重要なアプリケーションにますます統合されている。
最近の研究によると、FRSの脆弱性は敵(例えば、敵パッチ攻撃)やバックドア攻撃(例えば、データ中毒の訓練)であることが明らかになっている。
論文 参考訳(メタデータ) (2024-05-21T13:34:23Z) - EmInspector: Combating Backdoor Attacks in Federated Self-Supervised Learning Through Embedding Inspection [53.25863925815954]
フェデレートされた自己教師付き学習(FSSL)は、クライアントの膨大な量の未ラベルデータの利用を可能にする、有望なパラダイムとして登場した。
FSSLはアドバンテージを提供するが、バックドア攻撃に対する感受性は調査されていない。
ローカルモデルの埋め込み空間を検査し,悪意のあるクライアントを検知する埋め込み検査器(EmInspector)を提案する。
論文 参考訳(メタデータ) (2024-05-21T06:14:49Z) - Dealing Doubt: Unveiling Threat Models in Gradient Inversion Attacks under Federated Learning, A Survey and Taxonomy [10.962424750173332]
フェデレートラーニング(FL)は、機械学習トレーニングを分散したプライバシ保護のための主要なパラダイムとして登場した。
近年のGIA(グラデーション・インバージョン・アタック)の研究では、FLの勾配更新がプライベートトレーニングサンプルに関する情報を漏洩させることが示されている。
本稿では、FL脅威モデル、特に悪意のあるサーバやクライアントに焦点を当てたGIAに関する調査と新たな分類について述べる。
論文 参考訳(メタデータ) (2024-05-16T18:15:38Z) - A Stealthy Wrongdoer: Feature-Oriented Reconstruction Attack against Split Learning [14.110303634976272]
Split Learning(SL)は、プライバシ保護機能と最小限の計算要件で有名な分散学習フレームワークである。
以前の研究は、トレーニングデータを再構築するサーバ敵によるSLシステムの潜在的なプライバシー侵害について、一貫して強調している。
本稿では,特徴指向再構築攻撃 (FORA) という,SL上での半正直なデータ再構成攻撃について紹介する。
論文 参考訳(メタデータ) (2024-05-07T08:38:35Z) - Robust Federated Learning Mitigates Client-side Training Data Distribution Inference Attacks [48.70867241987739]
InferGuardは、クライアント側のトレーニングデータ分散推論攻撃に対する防御を目的とした、新しいビザンチン・ロバスト集約ルールである。
実験の結果,我々の防衛機構はクライアント側のトレーニングデータ分布推定攻撃に対する防御に極めて有効であることが示唆された。
論文 参考訳(メタデータ) (2024-03-05T17:41:35Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
フェデレートラーニング(FL)により、分散参加者は、データを中央サーバに直接共有することなく、グローバルモデルをトレーニングできる。
近年の研究では、FLは元のトレーニングサンプルの再構築を目的とした勾配反転攻撃(GIA)に弱いことが判明している。
本稿では,クライアント側から起動可能な新たな攻撃手法であるクライアント側中毒性グレーディエント・インバージョン(CGI)を提案する。
論文 参考訳(メタデータ) (2023-09-14T03:48:27Z) - FedDefender: Client-Side Attack-Tolerant Federated Learning [60.576073964874]
フェデレーション学習は、プライバシを損なうことなく、分散化されたデータソースからの学習を可能にする。
悪意のあるクライアントがトレーニングプロセスに干渉する、毒殺攻撃のモデル化には脆弱である。
我々はFedDefenderと呼ばれるクライアントサイドに焦点を当てた新しい防御機構を提案し、クライアントの堅牢なローカルモデルのトレーニングを支援する。
論文 参考訳(メタデータ) (2023-07-18T08:00:41Z) - Understanding the Vulnerability of Skeleton-based Human Activity Recognition via Black-box Attack [53.032801921915436]
HAR(Human Activity Recognition)は、自動運転車など、幅広い用途に採用されている。
近年,敵対的攻撃に対する脆弱性から,骨格型HAR法の堅牢性に疑問が呈されている。
攻撃者がモデルの入出力しかアクセスできない場合でも、そのような脅威が存在することを示す。
BASARと呼ばれる骨格をベースとしたHARにおいて,最初のブラックボックス攻撃手法を提案する。
論文 参考訳(メタデータ) (2022-11-21T09:51:28Z) - Unleashing the Tiger: Inference Attacks on Split Learning [2.492607582091531]
クライアントのプライベートトレーニングセットの再構築を目的とした汎用的な攻撃戦略を導入する。
悪意のあるサーバは、分散モデルの学習プロセスを積極的にハイジャックすることができる。
我々は、最近提案された防御手法を克服できることを実証する。
論文 参考訳(メタデータ) (2020-12-04T15:41:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。