論文の概要: Hiding in Plain Sight: Disguising Data Stealing Attacks in Federated Learning
- arxiv url: http://arxiv.org/abs/2306.03013v5
- Date: Mon, 15 Apr 2024 17:50:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-18 02:30:42.224025
- Title: Hiding in Plain Sight: Disguising Data Stealing Attacks in Federated Learning
- Title(参考訳): 平易な視点で考える:フェデレーションラーニングにおけるデータステアリング攻撃
- Authors: Kostadin Garov, Dimitar I. Dimitrov, Nikola Jovanović, Martin Vechev,
- Abstract要約: 悪意のあるサーバ(MS)攻撃のクライアント側検出性を初めて検討した。
これらの要件を満たす新しいアタックフレームワークであるSEERを提案する。
SEERは,最大512のバッチサイズであっても,現実的なネットワークの勾配からユーザデータを盗むことができることを示す。
- 参考スコア(独自算出の注目度): 1.9374282535132377
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Malicious server (MS) attacks have enabled the scaling of data stealing in federated learning to large batch sizes and secure aggregation, settings previously considered private. However, many concerns regarding the client-side detectability of MS attacks were raised, questioning their practicality. In this work, for the first time, we thoroughly study client-side detectability. We first demonstrate that all prior MS attacks are detectable by principled checks, and formulate a necessary set of requirements that a practical MS attack must satisfy. Next, we propose SEER, a novel attack framework that satisfies these requirements. The key insight of SEER is the use of a secret decoder, jointly trained with the shared model. We show that SEER can steal user data from gradients of realistic networks, even for large batch sizes of up to 512 and under secure aggregation. Our work is a promising step towards assessing the true vulnerability of federated learning in real-world settings.
- Abstract(参考訳): 悪意のあるサーバ(MS)攻撃は、フェデレートされた学習におけるデータ盗難のスケーリングを大規模なバッチサイズに拡大し、これまでプライベートと考えられていたセキュアなアグリゲーションを可能にした。
しかし、MS攻撃のクライアント側検出性に関する多くの懸念が提起され、その実用性に疑問が持たれた。
本研究では,クライアント側の検出可能性について,初めて徹底的に研究する。
先述のMS攻撃はすべて、原則的なチェックによって検出可能であることをまず実証し、実践的なMS攻撃が満たさなければならない要件セットを定式化する。
次に,これらの要件を満たす新たな攻撃フレームワークであるSEERを提案する。
SEERの重要な洞察は、共有モデルと共同でトレーニングされたシークレットデコーダを使用することである。
SEERは,最大512のバッチサイズでセキュアなアグリゲーション下であっても,現実的なネットワークの勾配からユーザデータを盗むことができることを示す。
私たちの仕事は、現実の環境でのフェデレーション学習の真の脆弱性を評価するための、有望なステップです。
関連論文リスト
- RLSA-PFL: Robust Lightweight Secure Aggregation with Model Inconsistency Detection in Privacy-Preserving Federated Learning [13.117628927803985]
フェデレートラーニング(FL)は、ローカルモデルを共有することで、中央サーバにプライベートデータを公開することなく、グローバルな機械学習モデルを協調的にトレーニングすることを可能にする。
FLでは、敵が共有モデルパラメータから機密情報を推測する可能性のあるプライバシー上の脆弱性が報告されている。
本稿では,軽量な暗号プリミティブをプライバシリスクに利用したマスキングに基づくセキュアアグリゲーション手法を提案する。
論文 参考訳(メタデータ) (2025-02-13T06:01:09Z) - Rethinking the Vulnerabilities of Face Recognition Systems:From a Practical Perspective [53.24281798458074]
顔認識システム(FRS)は、監視やユーザー認証を含む重要なアプリケーションにますます統合されている。
最近の研究によると、FRSの脆弱性は敵(例えば、敵パッチ攻撃)やバックドア攻撃(例えば、データ中毒の訓練)であることが明らかになっている。
論文 参考訳(メタデータ) (2024-05-21T13:34:23Z) - EmInspector: Combating Backdoor Attacks in Federated Self-Supervised Learning Through Embedding Inspection [53.25863925815954]
フェデレートされた自己教師付き学習(FSSL)は、クライアントの膨大な量の未ラベルデータの利用を可能にする、有望なパラダイムとして登場した。
FSSLはアドバンテージを提供するが、バックドア攻撃に対する感受性は調査されていない。
ローカルモデルの埋め込み空間を検査し,悪意のあるクライアントを検知する埋め込み検査器(EmInspector)を提案する。
論文 参考訳(メタデータ) (2024-05-21T06:14:49Z) - Dealing Doubt: Unveiling Threat Models in Gradient Inversion Attacks under Federated Learning, A Survey and Taxonomy [10.962424750173332]
フェデレートラーニング(FL)は、機械学習トレーニングを分散したプライバシ保護のための主要なパラダイムとして登場した。
近年のGIA(グラデーション・インバージョン・アタック)の研究では、FLの勾配更新がプライベートトレーニングサンプルに関する情報を漏洩させることが示されている。
本稿では、FL脅威モデル、特に悪意のあるサーバやクライアントに焦点を当てたGIAに関する調査と新たな分類について述べる。
論文 参考訳(メタデータ) (2024-05-16T18:15:38Z) - URVFL: Undetectable Data Reconstruction Attack on Vertical Federated Learning [9.017014896207442]
既存の悪意のある攻撃は、基礎となるVFLトレーニングタスクを変化させ、受信した勾配と正直なトレーニングで受け取った勾配を比較することで容易に検出できる。
我々は,電流検出機構を回避する新しい攻撃戦略であるURVFLを開発する。
包括的実験により、URVFLは既存の攻撃を著しく上回り、悪意のある攻撃に対するSOTA検出方法を回避することに成功した。
論文 参考訳(メタデータ) (2024-04-30T14:19:06Z) - Robust Federated Learning Mitigates Client-side Training Data Distribution Inference Attacks [48.70867241987739]
InferGuardは、クライアント側のトレーニングデータ分散推論攻撃に対する防御を目的とした、新しいビザンチン・ロバスト集約ルールである。
実験の結果,我々の防衛機構はクライアント側のトレーニングデータ分布推定攻撃に対する防御に極めて有効であることが示唆された。
論文 参考訳(メタデータ) (2024-03-05T17:41:35Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
フェデレートラーニング(FL)により、分散参加者は、データを中央サーバに直接共有することなく、グローバルモデルをトレーニングできる。
近年の研究では、FLは元のトレーニングサンプルの再構築を目的とした勾配反転攻撃(GIA)に弱いことが判明している。
本稿では,クライアント側から起動可能な新たな攻撃手法であるクライアント側中毒性グレーディエント・インバージョン(CGI)を提案する。
論文 参考訳(メタデータ) (2023-09-14T03:48:27Z) - FedDefender: Client-Side Attack-Tolerant Federated Learning [60.576073964874]
フェデレーション学習は、プライバシを損なうことなく、分散化されたデータソースからの学習を可能にする。
悪意のあるクライアントがトレーニングプロセスに干渉する、毒殺攻撃のモデル化には脆弱である。
我々はFedDefenderと呼ばれるクライアントサイドに焦点を当てた新しい防御機構を提案し、クライアントの堅牢なローカルモデルのトレーニングを支援する。
論文 参考訳(メタデータ) (2023-07-18T08:00:41Z) - Understanding the Vulnerability of Skeleton-based Human Activity Recognition via Black-box Attack [53.032801921915436]
HAR(Human Activity Recognition)は、自動運転車など、幅広い用途に採用されている。
近年,敵対的攻撃に対する脆弱性から,骨格型HAR法の堅牢性に疑問が呈されている。
攻撃者がモデルの入出力しかアクセスできない場合でも、そのような脅威が存在することを示す。
BASARと呼ばれる骨格をベースとしたHARにおいて,最初のブラックボックス攻撃手法を提案する。
論文 参考訳(メタデータ) (2022-11-21T09:51:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。