論文の概要: Brain Diffusion for Visual Exploration: Cortical Discovery using Large
Scale Generative Models
- arxiv url: http://arxiv.org/abs/2306.03089v1
- Date: Mon, 5 Jun 2023 17:59:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-06 13:25:27.817771
- Title: Brain Diffusion for Visual Exploration: Cortical Discovery using Large
Scale Generative Models
- Title(参考訳): 視覚探索のための脳拡散:大規模生成モデルを用いた皮質発見
- Authors: Andrew F. Luo, Margaret M. Henderson, Leila Wehbe, Michael J. Tarr
- Abstract要約: 我々は,自然画像とfMRI記録を用いて,与えられた脳領域を活性化するために予測される画像を合成する,データ駆動型アプローチを提案する。
提案手法は,脳誘導画像合成と大規模拡散モデルを組み合わせた最近の生成法に基づいている。
これらの結果は、人間の視覚野の微細な機能的構造に対する理解を深めるものである。
- 参考スコア(独自算出の注目度): 6.76734184727575
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: A long standing goal in neuroscience has been to elucidate the functional
organization of the brain. Within higher visual cortex, functional accounts
have remained relatively coarse, focusing on regions of interest (ROIs) and
taking the form of selectivity for broad categories such as faces, places,
bodies, food, or words. Because the identification of such ROIs has typically
relied on manually assembled stimulus sets consisting of isolated objects in
non-ecological contexts, exploring functional organization without robust a
priori hypotheses has been challenging. To overcome these limitations, we
introduce a data-driven approach in which we synthesize images predicted to
activate a given brain region using paired natural images and fMRI recordings,
bypassing the need for category-specific stimuli. Our approach -- Brain
Diffusion for Visual Exploration ("BrainDiVE") -- builds on recent generative
methods by combining large-scale diffusion models with brain-guided image
synthesis. Validating our method, we demonstrate the ability to synthesize
preferred images with appropriate semantic specificity for well-characterized
category-selective ROIs. We then show that BrainDiVE can characterize
differences between ROIs selective for the same high-level category. Finally we
identify novel functional subdivisions within these ROIs, validated with
behavioral data. These results advance our understanding of the fine-grained
functional organization of human visual cortex, and provide well-specified
constraints for further examination of cortical organization using
hypothesis-driven methods.
- Abstract(参考訳): 神経科学における長年の目標は、脳の機能的組織を解明することであった。
高度な視覚野の中では、機能的説明は比較的粗いままであり、関心領域(ROI)に焦点を当て、顔、場所、体、食べ物、言葉など幅広いカテゴリーの選択の形式を採っている。
このようなROIの同定は、通常、非生態的な文脈で孤立した物体からなる手作業による刺激セットに依存しているため、先験仮説を頑健にしない機能的な組織を探索することは困難である。
これらの限界を克服するために, カテゴリー特異的な刺激を必要とせず, 自然画像とfmri記録を組み合わせることで, 所定の脳領域を活性化させると予測される画像を合成するデータ駆動手法を提案する。
脳拡散(Brain Diffusion for Visual Exploration)は、脳誘導画像合成と大規模拡散モデルを組み合わせることで、最近の生成法に基づいている。
本手法の有効性を検証し,カテゴリ選択型roisに対して,適切な意味特異性を持つ好適画像を合成する能力を示す。
次に、BrainDiVEは、同じハイレベルカテゴリに選択されたROIの違いを特徴付けることができることを示す。
最後に,これらのrois内の新たな機能的部分区分を同定し,行動データを用いて検証する。
これらの結果は、人間の視覚野の細粒度機能構造の理解を前進させ、仮説駆動法を用いて皮質組織のさらなる検討のための明確な制約を与える。
関連論文リスト
- Brain-like Functional Organization within Large Language Models [58.93629121400745]
人間の脳は長い間人工知能(AI)の追求にインスピレーションを与えてきた
最近のニューロイメージング研究は、人工ニューラルネットワーク(ANN)の計算的表現と、人間の脳の刺激に対する神経反応との整合性の説得力のある証拠を提供する。
本研究では、人工ニューロンのサブグループと機能的脳ネットワーク(FBN)を直接結合することで、このギャップを埋める。
このフレームワークはANサブグループをFBNにリンクし、大きな言語モデル(LLM)内で脳に似た機能的組織を記述できる。
論文 参考訳(メタデータ) (2024-10-25T13:15:17Z) - Brain Mapping with Dense Features: Grounding Cortical Semantic Selectivity in Natural Images With Vision Transformers [5.265058307999745]
本稿では,脳内視覚概念を分離するBrainSAILを紹介する。
BrainSAILは、事前訓練された視覚モデルから意味的に一貫性があり、密集した空間的特徴を利用する。
カテゴリー選択性のある大脳皮質領域におけるBrainSAILの評価を行った。
論文 参考訳(メタデータ) (2024-10-07T17:59:45Z) - Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation [53.70131202548981]
本稿では,脳MRIにKGPL(Knowledge-Guided Prompt Learning)を用いた2段階のセグメンテーションフレームワークを提案する。
具体的には,大規模データセットと準最適ラベルを用いたトレーニング前セグメンテーションモデルについて述べる。
知識的プロンプトの導入は、解剖学的多様性と生物学的プロセスの間の意味的関係を捉えている。
論文 参考訳(メタデータ) (2024-07-31T04:32:43Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
脳の復号化は、獲得した脳信号から刺激を再構築することを目的としている。
現在、脳の復号化はモデルごとのオブジェクトごとのパラダイムに限られている。
我々は,1つのモデルのみを用いることで,オブジェクト間脳デコーディングを実現するMindBridgeを提案する。
論文 参考訳(メタデータ) (2024-04-11T15:46:42Z) - BrainSCUBA: Fine-Grained Natural Language Captions of Visual Cortex Selectivity [6.285481522918523]
そこで本研究では,関心のボクセルを最大に活性化する画像に対して,自然言語記述を生成するデータ駆動方式を提案する。
高次視覚領域にまたがる微細なボクセルレベルのキャプションにより,本手法の有効性を検証した。
そこで我々は,脳内の「個人」表現の分布に関する探索的研究を行った。
論文 参考訳(メタデータ) (2023-10-06T17:59:53Z) - Interpretable Fusion Analytics Framework for fMRI Connectivity: Self-Attention Mechanism and Latent Space Item-Response Model [0.4893345190925178]
本稿では,ディープラーニングプロセスの分類結果を解釈する新しい分析フレームワークを提案する。
この枠組みを4種類の認知障害に適用することにより,本手法が重要なROI関数の決定に有効であることを示す。
論文 参考訳(メタデータ) (2022-07-04T17:01:18Z) - Deep Representations for Time-varying Brain Datasets [4.129225533930966]
本稿では、領域マップされたfMRIシーケンスと構造接続性の両方を入力として組み込んだ効率的なグラフニューラルネットワークモデルを構築する。
サンプルレベルの適応的隣接行列を学習することで、潜伏する脳のダイナミクスのよい表現を見つけ出す。
これらのモジュールは容易に適応でき、神経科学領域以外の用途にも有用である可能性がある。
論文 参考訳(メタデータ) (2022-05-23T21:57:31Z) - Brain Cortical Functional Gradients Predict Cortical Folding Patterns
via Attention Mesh Convolution [51.333918985340425]
我々は,脳の皮質ジャイロ-サルカル分割図を予測するための新しいアテンションメッシュ畳み込みモデルを開発した。
実験の結果,我々のモデルによる予測性能は,他の最先端モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-05-21T14:08:53Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
脳ネットワーク上のグラフマイニングは、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を促進する可能性がある。
本稿では,Deep Signed Brain Networks (DSBN) と呼ばれる新しいグラフ学習フレームワークを提案する。
臨床表現型および神経変性疾患予測の枠組みを,2つの独立した公開データセットを用いて検証した。
論文 参考訳(メタデータ) (2022-05-06T03:45:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。