SwinRDM: Integrate SwinRNN with Diffusion Model towards High-Resolution
and High-Quality Weather Forecasting
- URL: http://arxiv.org/abs/2306.03110v1
- Date: Mon, 5 Jun 2023 05:11:03 GMT
- Title: SwinRDM: Integrate SwinRNN with Diffusion Model towards High-Resolution
and High-Quality Weather Forecasting
- Authors: Lei Chen, Fei Du, Yuan Hu, Fan Wang, Zhibin Wang
- Abstract summary: We develop a data-driven model SwinRDM which integrates an improved version of SwinRNN with a diffusion model.
SwinRDM performs predictions at 0.25-degree resolution and achieves superior forecasting accuracy to IFS.
- Score: 18.464408838231957
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data-driven medium-range weather forecasting has attracted much attention in
recent years. However, the forecasting accuracy at high resolution is
unsatisfactory currently. Pursuing high-resolution and high-quality weather
forecasting, we develop a data-driven model SwinRDM which integrates an
improved version of SwinRNN with a diffusion model. SwinRDM performs
predictions at 0.25-degree resolution and achieves superior forecasting
accuracy to IFS (Integrated Forecast System), the state-of-the-art operational
NWP model, on representative atmospheric variables including 500 hPa
geopotential (Z500), 850 hPa temperature (T850), 2-m temperature (T2M), and
total precipitation (TP), at lead times of up to 5 days. We propose to leverage
a two-step strategy to achieve high-resolution predictions at 0.25-degree
considering the trade-off between computation memory and forecasting accuracy.
Recurrent predictions for future atmospheric fields are firstly performed at
1.40625-degree resolution, and then a diffusion-based super-resolution model is
leveraged to recover the high spatial resolution and finer-scale atmospheric
details. SwinRDM pushes forward the performance and potential of data-driven
models for a large margin towards operational applications.
Related papers
- Regional data-driven weather modeling with a global stretched-grid [0.3804109677654105]
The model is based on graph neural networks, which naturally affords arbitrary multi-resolution grid configurations.
The model is applied to short-range weather prediction for the Nordics, producing forecasts at 2.5 km spatial and 6 h temporal resolution.
The model also produces competitive precipitation and wind speed forecasts, but is shown to underestimate extreme events.
arXiv Detail & Related papers (2024-09-04T17:31:20Z) - FuXi-ENS: A machine learning model for medium-range ensemble weather forecasting [16.562512279873577]
We introduce FuXi-ENS, an advanced ML model designed to deliver 6-hourly global ensemble weather forecasts up to 15 days.
FuXi-ENS runs at a significantly increased spatial resolution of 0.25textdegree, incorporating 5 atmospheric variables at 13 pressure levels, along with 13 surface variables.
Results demonstrate that FuXi-ENS outperforms ensemble forecasts from the ECMWF, a world leading NWP model, in the CRPS of 98.1% of 360 variable and forecast lead time combinations.
arXiv Detail & Related papers (2024-05-09T17:15:09Z) - KARINA: An Efficient Deep Learning Model for Global Weather Forecast [2.9687381456164004]
KARINA achieves forecasting accuracy comparable to higher-resolution counterparts with significantly less computational resources.
KARINA combines ConvNext, SENet, and Geocyclic Padding to enhance weather forecasting at a 2.5deg resolution.
KARINA sets new benchmarks in weather forecasting accuracy, surpassing existing models like the ECMWF S2S reforecasts at a lead time of up to 7 days.
arXiv Detail & Related papers (2024-03-13T06:41:37Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - FengWu: Pushing the Skillful Global Medium-range Weather Forecast beyond
10 Days Lead [93.67314652898547]
We present FengWu, an advanced data-driven global medium-range weather forecast system based on Artificial Intelligence (AI)
FengWu is able to accurately reproduce the atmospheric dynamics and predict the future land and atmosphere states at 37 vertical levels on a 0.25deg latitude-longitude resolution.
The results suggest that FengWu can significantly improve the forecast skill and extend the skillful global medium-range weather forecast out to 10.75 days lead.
arXiv Detail & Related papers (2023-04-06T09:16:39Z) - Statistical Downscaling of Temperature Distributions from the Synoptic
Scale to the Mesoscale Using Deep Convolutional Neural Networks [0.0]
One of the promising applications is developing a statistical surrogate model that converts the output images of low-resolution dynamic models to high-resolution images.
Our study evaluates a surrogate model that downscales synoptic temperature fields to mesoscale temperature fields every 6 hours.
If the surrogate models are implemented at short time intervals, they will provide high-resolution weather forecast guidance or environment emergency alerts at low cost.
arXiv Detail & Related papers (2020-07-20T06:24:08Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.