論文の概要: DagSim: Combining DAG-based model structure with unconstrained data
types and relations for flexible, transparent, and modularized data
simulation
- arxiv url: http://arxiv.org/abs/2205.11234v1
- Date: Fri, 6 May 2022 17:43:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-29 21:24:00.008508
- Title: DagSim: Combining DAG-based model structure with unconstrained data
types and relations for flexible, transparent, and modularized data
simulation
- Title(参考訳): dagsim:dagベースのモデル構造と制約のないデータ型の組み合わせと柔軟で透明でモジュール化されたデータシミュレーションのための関係性
- Authors: Ghadi S. Al Hajj, Johan Pensar, Geir Kjetil Sandve
- Abstract要約: DAGベースのデータシミュレーションのためのPythonベースのフレームワークであるDagSimについて,変数型や関数関係に制約を加えることなく紹介する。
シミュレーションモデル構造を定義するための簡潔なYAMLフォーマットは透明性を促進する。
メタデータ変数が画像の形状を制御したり、バイオシーケンスのパターンを制御したりするユースケースを通して、DagSimの能力について説明する。
- 参考スコア(独自算出の注目度): 2.685173014586162
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Data simulation is fundamental for machine learning and causal inference, as
it allows exploration of scenarios and assessment of methods in settings with
full control of ground truth. Directed acyclic graphs (DAGs) are well
established for encoding the dependence structure over a collection of
variables in both inference and simulation settings. However, while modern
machine learning is applied to data of an increasingly complex nature,
DAG-based simulation frameworks are still confined to settings with relatively
simple variable types and functional forms. We here present DagSim, a
Python-based framework for DAG-based data simulation without any constraints on
variable types or functional relations. A succinct YAML format for defining the
simulation model structure promotes transparency, while separate user-provided
functions for generating each variable based on its parents ensure simulation
code modularization. We illustrate the capabilities of DagSim through use cases
where metadata variables control shapes in an image and patterns in
bio-sequences.
- Abstract(参考訳): データシミュレーションは、機械学習と因果推論の基礎であり、地上の真実を完全に制御した設定におけるシナリオの探索と手法の評価を可能にする。
直接非巡回グラフ(DAG)は、推論とシミュレーションの両方の設定において変数の集合上の依存構造を符号化するためによく確立されている。
しかし、最近の機械学習はますます複雑化するデータに適用される一方、DAGベースのシミュレーションフレームワークは、比較的単純な変数型と関数型を持つ設定に限定されている。
DAGベースのデータシミュレーションのためのPythonベースのフレームワークであるDagSimについて,変数型や関数関係に制約を加えることなく紹介する。
シミュレーションモデル構造を定義するための簡潔なYAMLフォーマットは透明性を促進し、一方、親に基づいて各変数を生成するユーザが提供する関数はシミュレーションコードのモジュール化を保証する。
メタデータ変数が画像の形状や生物配列のパターンを制御するユースケースを通して,DagSimの機能を説明する。
関連論文リスト
- sbi reloaded: a toolkit for simulation-based inference workflows [15.696312591547283]
$texttsbi$は、ニューラルネットワークに基づいたベイズSBIアルゴリズムを実装するPyTorchベースのパッケージである。
texttsbi$ツールキットを使えば、科学者やエンジニアが最先端のSBIメソッドをブラックボックスシミュレータに適用できる。
論文 参考訳(メタデータ) (2024-11-26T11:31:47Z) - Induced Covariance for Causal Discovery in Linear Sparse Structures [55.2480439325792]
因果モデルでは、観測データから変数間の因果関係を解き明かそうとしている。
本稿では,変数が線形に疎結合な関係を示す設定のための新しい因果探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-02T04:01:38Z) - UniTST: Effectively Modeling Inter-Series and Intra-Series Dependencies for Multivariate Time Series Forecasting [98.12558945781693]
フラット化されたパッチトークンに統一された注意機構を含む変圧器ベースモデルUniTSTを提案する。
提案モデルでは単純なアーキテクチャを採用しているが,時系列予測のためのいくつかのデータセットの実験で示されたような,魅力的な性能を提供する。
論文 参考訳(メタデータ) (2024-06-07T14:39:28Z) - Shape Arithmetic Expressions: Advancing Scientific Discovery Beyond Closed-Form Equations [56.78271181959529]
GAM(Generalized Additive Models)は、変数とターゲットの間の非線形関係をキャプチャできるが、複雑な特徴相互作用をキャプチャすることはできない。
本稿では,GAMのフレキシブルな形状関数と,数学的表現に見られる複雑な特徴相互作用を融合させる形状表現算術(SHARE)を提案する。
また、標準制約を超えた表現の透明性を保証するSHAREを構築するための一連のルールを設計する。
論文 参考訳(メタデータ) (2024-04-15T13:44:01Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
拡散モデル(DPM)は急速に進化し、合成データのシミュレーションにおける主要な生成モデルの一つとなっている。
本稿では,個人が訪れた物理的位置を表す変数列である合成個別位置軌跡(ILT)の生成にDPMを用いることを提案する。
論文 参考訳(メタデータ) (2024-02-19T15:57:39Z) - Informal Safety Guarantees for Simulated Optimizers Through
Extrapolation from Partial Simulations [0.0]
自己教師付き学習は、最先端の言語モデリングのバックボーンである。
自己教師付きデータセットにおける予測損失を伴うトレーニングはシミュレータを引き起こすと論じられている。
論文 参考訳(メタデータ) (2023-11-29T09:32:56Z) - Str2Str: A Score-based Framework for Zero-shot Protein Conformation
Sampling [23.74897713386661]
タンパク質の動的性質は、その生物学的機能や性質を決定するために重要である。
既存の学習ベースのアプローチでは、直接サンプリングを行うが、トレーニングにはターゲット固有のシミュレーションデータに大きく依存する。
ゼロショットコンフォーメーションサンプリングが可能な新しい構造間翻訳フレームワークStr2Strを提案する。
論文 参考訳(メタデータ) (2023-06-05T15:19:06Z) - DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained
Diffusion [66.21290235237808]
本稿では,データセットからのインスタンスのバッチを進化状態にエンコードするエネルギー制約拡散モデルを提案する。
任意のインスタンス対間の対拡散強度に対する閉形式最適推定を示唆する厳密な理論を提供する。
各種タスクにおいて優れた性能を有する汎用エンコーダバックボーンとして,本モデルの適用性を示す実験を行った。
論文 参考訳(メタデータ) (2023-01-23T15:18:54Z) - Modular machine learning-based elastoplasticity: generalization in the
context of limited data [0.0]
エラスト塑性の定式化のモジュラリティに頼って,データの変動量に対処できるハイブリッドフレームワークについて論じる。
発見された物質モデルは、よく補間できるだけでなく、トレーニングデータの領域外から熱力学的に一貫した方法で正確な外挿を可能にする。
論文 参考訳(メタデータ) (2022-10-15T17:35:23Z) - Enhancing Mechanical Metamodels with a Generative Model-Based Augmented
Training Dataset [0.7734726150561089]
組織の機械的挙動を定義する上で重要な役割を果たしているミクロ構造パターンをシミュレートすることは困難である。
本研究では,限られた入力パターンデータセットを増大させるツールとして,機械学習に基づく生成モデルの有効性について検討する。
Cahn-Hilliardパターンに基づく有限要素解析シミュレーションのオープンアクセスデータセットを作成しました。
論文 参考訳(メタデータ) (2022-03-08T16:15:54Z) - Meta-Sim2: Unsupervised Learning of Scene Structure for Synthetic Data
Generation [88.04759848307687]
Meta-Sim2では,パラメータに加えてシーン構造を学習することを目指している。
強化学習(Reinforcement Learning)を使用してモデルをトレーニングし、トレーニング成功の鍵となる合成画像とターゲット画像の間に特徴空間のばらつきを設計する。
また,この手法は,他のベースラインシミュレーション手法と対照的に,生成したデータセット上でトレーニングしたオブジェクト検出器の性能を下流で向上させることを示す。
論文 参考訳(メタデータ) (2020-08-20T17:28:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。