End-to-end Differentiable Clustering with Associative Memories
- URL: http://arxiv.org/abs/2306.03209v1
- Date: Mon, 5 Jun 2023 19:34:36 GMT
- Title: End-to-end Differentiable Clustering with Associative Memories
- Authors: Bishwajit Saha, Dmitry Krotov, Mohammed J. Zaki, Parikshit Ram
- Abstract summary: Clustering is a widely used unsupervised learning technique involving an intensive discrete optimization problem.
We propose a novel unconstrained continuous relaxation of the discrete clustering problem, enabling end-to-end differentiable clustering with AM, dubbed ClAM.
Our evaluations on varied datasets demonstrate that ClAM benefits from the self-supervision, and significantly improves upon both the traditional Lloyd's k-means algorithm, and more recent continuous clustering relaxations (by upto 60% in terms of the Silhouette Coefficient)
- Score: 23.618514621460694
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Clustering is a widely used unsupervised learning technique involving an
intensive discrete optimization problem. Associative Memory models or AMs are
differentiable neural networks defining a recursive dynamical system, which
have been integrated with various deep learning architectures. We uncover a
novel connection between the AM dynamics and the inherent discrete assignment
necessary in clustering to propose a novel unconstrained continuous relaxation
of the discrete clustering problem, enabling end-to-end differentiable
clustering with AM, dubbed ClAM. Leveraging the pattern completion ability of
AMs, we further develop a novel self-supervised clustering loss. Our
evaluations on varied datasets demonstrate that ClAM benefits from the
self-supervision, and significantly improves upon both the traditional Lloyd's
k-means algorithm, and more recent continuous clustering relaxations (by upto
60% in terms of the Silhouette Coefficient).
Related papers
- Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means one-step dimensionality reduction clustering method has made some progress in addressing the curse of dimensionality in clustering tasks.
We propose a unified framework that integrates manifold learning with K-means, resulting in the self-supervised graph embedding framework.
arXiv Detail & Related papers (2024-09-24T08:59:51Z) - A3S: A General Active Clustering Method with Pairwise Constraints [66.74627463101837]
A3S features strategic active clustering adjustment on the initial cluster result, which is obtained by an adaptive clustering algorithm.
In extensive experiments across diverse real-world datasets, A3S achieves desired results with significantly fewer human queries.
arXiv Detail & Related papers (2024-07-14T13:37:03Z) - ClusterDDPM: An EM clustering framework with Denoising Diffusion
Probabilistic Models [9.91610928326645]
Denoising diffusion probabilistic models (DDPMs) represent a new and promising class of generative models.
In this study, we introduce an innovative expectation-maximization (EM) framework for clustering using DDPMs.
In the M-step, our focus lies in learning clustering-friendly latent representations for the data by employing the conditional DDPM and matching the distribution of latent representations to the mixture of Gaussian priors.
arXiv Detail & Related papers (2023-12-13T10:04:06Z) - Class-Incremental Mixture of Gaussians for Deep Continual Learning [15.49323098362628]
We propose end-to-end incorporation of the mixture of Gaussians model into the continual learning framework.
We show that our model can effectively learn in memory-free scenarios with fixed extractors.
arXiv Detail & Related papers (2023-07-09T04:33:19Z) - Efficient Bilateral Cross-Modality Cluster Matching for Unsupervised Visible-Infrared Person ReID [56.573905143954015]
We propose a novel bilateral cluster matching-based learning framework to reduce the modality gap by matching cross-modality clusters.
Under such a supervisory signal, a Modality-Specific and Modality-Agnostic (MSMA) contrastive learning framework is proposed to align features jointly at a cluster-level.
Experiments on the public SYSU-MM01 and RegDB datasets demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2023-05-22T03:27:46Z) - Dynamic Clustering and Cluster Contrastive Learning for Unsupervised
Person Re-identification [29.167783500369442]
Unsupervised Re-ID methods aim at learning robust and discriminative features from unlabeled data.
We propose a dynamic clustering and cluster contrastive learning (DCCC) method.
Experiments on several widely used public datasets validate the effectiveness of our proposed DCCC.
arXiv Detail & Related papers (2023-03-13T01:56:53Z) - Mind Your Clever Neighbours: Unsupervised Person Re-identification via
Adaptive Clustering Relationship Modeling [19.532602887109668]
Unsupervised person re-identification (Re-ID) attracts increasing attention due to its potential to resolve the scalability problem of supervised Re-ID models.
Most existing unsupervised methods adopt an iterative clustering mechanism, where the network was trained based on pseudo labels generated by unsupervised clustering.
To generate high-quality pseudo-labels and mitigate the impact of clustering errors, we propose a novel clustering relationship modeling framework for unsupervised person Re-ID.
arXiv Detail & Related papers (2021-12-03T10:55:07Z) - Deep Attention-guided Graph Clustering with Dual Self-supervision [49.040136530379094]
We propose a novel method, namely deep attention-guided graph clustering with dual self-supervision (DAGC)
We develop a dual self-supervision solution consisting of a soft self-supervision strategy with a triplet Kullback-Leibler divergence loss and a hard self-supervision strategy with a pseudo supervision loss.
Our method consistently outperforms state-of-the-art methods on six benchmark datasets.
arXiv Detail & Related papers (2021-11-10T06:53:03Z) - Cluster Analysis with Deep Embeddings and Contrastive Learning [0.0]
This work proposes a novel framework for performing image clustering from deep embeddings.
Our approach jointly learns representations and predicts cluster centers in an end-to-end manner.
Our framework performs on par with widely accepted clustering methods and outperforms the state-of-the-art contrastive learning method on the CIFAR-10 dataset.
arXiv Detail & Related papers (2021-09-26T22:18:15Z) - Correlation Clustering Reconstruction in Semi-Adversarial Models [70.11015369368272]
Correlation Clustering is an important clustering problem with many applications.
We study the reconstruction version of this problem in which one is seeking to reconstruct a latent clustering corrupted by random noise and adversarial modifications.
arXiv Detail & Related papers (2021-08-10T14:46:17Z) - Unsupervised Clustered Federated Learning in Complex Multi-source
Acoustic Environments [75.8001929811943]
We introduce a realistic and challenging, multi-source and multi-room acoustic environment.
We present an improved clustering control strategy that takes into account the variability of the acoustic scene.
The proposed approach is optimized using clustering-based measures and validated via a network-wide classification task.
arXiv Detail & Related papers (2021-06-07T14:51:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.